配图来自Canva可画
说起近两年最热门的话题,那一定非大模型莫属了。众所周知,伴随着ChatGPT的强势出圈,全球范围内掀起了一波人工智能热潮,国内外的诸多企业都开足马力,推出了自己的大模型产品。而AI大模型产品的不断问世,也上演了一番“百模大战”的盛况。
随着越来越多AI大模型产品的相继推出,AI大模型的落地应用也逐渐提上了日程,成为了各行各业的重点关注方向。值得注意的是,除了通用大模型之外,针对细分行业的垂直大模型数量也日渐增多,医疗场景更是受到各方关注的重点领域。事实上,自2023年以来,已经有诸多头部企业都在加码医疗大模型领域,而这也意味着大模型正在逐渐深入医疗行业。
大模型,医疗行业的新加速器?
近两年,AI大模型的热度居高不下,各行各业都在积极拥抱AI大模型,希望AI大模型能够为行业带来新的变化,医疗行业也不例外。AI大模型这股风已然吹到了医疗行业,一系列与医疗相关的大模型产品和应用正在相继涌现出来。
比如,京东健康正式发布了面向医疗健康行业的大模型“京医千询”;百度正式发布国内首个“产业级”医疗大模型“灵医大模型”;医联正式发布了自主研发的医疗大语言模型MedGPT;卫宁健康则是发布了医疗领域大模型“WiNGPT”。在各路玩家相继布局医疗大模型背后,也自有其逻辑。
对企业来说,AI大模型的引入,有助于提升医疗效率,降低成本。AI大模型是深度学习模型,这也就意味着AI大模型具备很强的学习能力,能够对海量数据进行分析和处理,并进行推理和预测。正因如此,医疗大模型能够对医疗数据进行分析和整理,并根据医疗信息进行相应的诊断,辅助医生进行诊断,而这可以在一定程度上促进医护工作者医疗效率的提高。比如,医疗大模型就能够将医生口述转化为带有对话语言的结构化笔记,极大地节省了医生手写病历的时间,提升了工作效率。
对用户来说,AI大模型产品的推出,有助于进一步提升患者的就诊体验,为其提供全方位医疗服务。不同于其他需求,用户的就医需求是长期存在的,但受各类因素影响,患者往往面临着多种难题,比如候诊时间长、找不到相应科室等等,就医过程中所遇到各种突发问题,也影响了患者的就医体验。而医疗大模型的出现,则有望解决患者在就医过程中所遇到的痛点问题,为患者带去更加高效、优质的就医体验。比如,在诊前环节,医疗大模型就能够根据患者的就医需求,为其推荐相应的科室,解决了患者不知道该挂哪个科室的问题。
除此之外,AI大模型的出现与应用,也能够在一定程度上助推医疗行业数字化转型加速。众所周知,数字化转型早已成为了各行业企业的重点发力方向之一,医疗行业也不例外。然而,不同于其他行业,医疗行业具备极大的特殊性和严肃性,再加上各地的基础设施建设情况不同、新旧系统共存,医疗行业存在着明显的“信息孤岛”现象,而这也是医疗行业数字化转型速度缓慢的重要原因所在。AI大模型在医疗领域拥有广阔的应用场景,随着AI大模型和医疗结合程度的加深,或将有助于推动医疗行业朝着更加数字化、智能化的方向发展。
百度、腾讯“水到渠成”
在这波AI大模型浪潮中,跑在最前面的无疑是互联网大厂,以百度、阿里、腾讯为代表的互联网大厂都相继推出了自家的AI大模型产品,比如,百度的“文心一言”大模型、阿里的“通义千问”大模型、腾讯的“混元”大模型。由于医疗行业被视为AI大模型落地的最佳领域之一,医疗行业也掀起了一波大模型热潮,许多互联网大厂也推出了自己的医疗大模型产品。比如,百度发布了“灵医大模型”、腾讯则是推出了“腾讯医疗大模型”。而互联网大厂之所以能够率先推出面向医疗行业的大模型产品,与其长时间的积累不无关系。
**一方面,百度、腾讯都已经推出了自研的通用大模型产品,有研发大模型产品的经验,这些经验能够为其专用的医疗大模型产品的推出提供借鉴和参考。**长期以来,以百度、腾讯为代表的互联网大厂都格外关注人工智能领域,并且在该领域持续深耕,积累了深厚的技术实力,而这些都为其推出AI大模型产品打下了坚实基础,也助推了其垂直大模型产品的出现。
比如,百度、腾讯等互联网大厂就在自研的通用大模型的基础上,引入专业的医学数据,对大模型进行训练和微调,最终推出面向医疗行业的专用大模型产品。具体来看,腾讯的医疗大模型就是基于腾讯全链路自研混元大模型研发的;百度的“灵医”大模型的技术底座同样来自于此前的文心一言大模型。
**另一方面,百度、腾讯等互联网大厂在医疗健康领域有所布局,有行业数据的积累。**一直以来,互联网大厂都在积极拓展业务版图,其中医疗健康领域就是其重点布局的领域之一。以百度为例,百度不仅推出了深耕医疗领域的AI医疗品牌“灵医智惠”,还打造了能够提供健康科普、在线问诊等服务的一站式健康管理平台“百度健康”。
正因如此,百度、腾讯等互联网大厂积累下来了大量医疗数据,这些数据积累使其推出专业的医疗大模型产品成为可能。据了解,在模型训练过程中,百度大健康事业群(HCG)先后投入了自有积累的超1000万优质医疗问答数据、超2000万多语种医学专业知识、超2亿用户每日医疗类搜索数据、超5亿权威健康科普内容。无独有偶,腾讯的医疗大模型加入了超过285万医疗实体、1250万医学关系、超98%医学知识的知识图谱和医学文献。
微脉、卫宁健康“乘势而起”
医疗大模型热度正高,除了互联网大厂频频布局之外,自然也少不了本行业玩家的参与,互联网医疗企业同样是落子不断。具体来看,全病程管理平台微脉正式发布了其自主研发的健康管理领域大语言模型应用——CareGPT;卫宁健康则是正式推出了医疗领域大模型——WiNGPT。在互联网医疗企业积极拥抱AI大模型背后,也并非毫无缘由。
一来,微脉、卫宁健康拥有丰富的医疗行业经验,以及海量的医疗数据,能为其训练医疗大模型奠定基础。数据对于AI大模型的重要性可想而知,AI大模型的能力之所以能够不断进化和提升,离不开数据的支撑。尤其是对行业大模型来说,行业数据更是格外重要。而无论是微脉,还是卫宁健康,都长期深耕于医疗健康领域,有着专业的医疗知识库。得益于此,微脉、卫宁健康都积累下来了海量的、高质量的医疗数据,这些数据无疑是大模型产品的优质训练数据集,能够帮助二者训练出精准度更高、可靠性更强的医疗大模型产品。
据了解,微脉的CareGPT在训练阶段就以循证医学为基础,使用了目前最新版本临床医学指南、疾病诊疗模型、专家共识等超10亿的医学文本数据,以及百万条微脉个案管理数据,形成专科专病管理的医疗健康知识库,并投入超过100位个案管理师参与RLHF监督调试训练。另一组数据显示,在2023年5月,WiNGPT训练的数据量已达到9720项药品知识、7200余项疾病知识、2800余项检查检验知识、1100余份指南文档,总训练Token数达37亿。
二来,微脉、卫宁健康的业务与医疗大模型有着天然的契合度,更容易实现医疗大模型的落地与应用,有望助推其业务的进一步发展。除了大模型产品的推出之外,后续的落地应用同样是相当重要的一环。由于微脉、卫宁健康本身就是互联网医疗企业,其业务开展也都围绕着医疗健康方面,医疗大模型与其业务有着很高的契合度,更容易实现落地。
比如,CareGPT就能对患者聊天内容进行分析,可以帮助患者自主进行初步的身体状况筛查,实现分诊导诊的智能化辅助,提升患者管理的效率。随着医疗大模型产品能力的不断进化,并且逐渐应用到具体场景中,医疗大模型也能够为互联网医疗企业业务赋能,有望为其带来新的业务增长点。
医疗大模型这条路还很远
得益于人工智能技术的蓬勃发展,以及相关技术在医疗场景的逐渐应用,AI医疗正在逐渐成为现实,医疗大模型的出现更是有望为医疗行业注入新的发展动力。当前,AI大模型浪潮席卷而来,无论是互联网大厂,还是互联网医疗企业,都不愿意错失这个机会,纷纷乘浪而上。只是,必须要说的是,医疗大模型虽蕴含着机遇,但同样有着门槛。
一是,医疗大模型容错率低,厂商们还需要不断打磨产品。不同于其他行业,医疗行业有着很强的严肃性和专业性,可以说是不容有失,这也就意味着医疗大模型产品的容错率极低,这就对厂商们提出了更高的要求。为了避免此类情况的发生,发力于此的厂商们必须保持审慎的态度,不断打磨产品本身,以提升大模型产品的能力。
二是,医疗数据的隐私性高、数据处理难度大,医疗大模型的训练不易。众所周知,由于医疗数据往往涉及患者本身,因此具备很高的私密性,但大模型能力的训练又需要大量数据为支撑,对研发医疗大模型的厂商来说,数据的获得有着比较高的难度。不仅如此,由于数据标准不一,医疗行业的数据处理同样难度较高,需要医疗大模型厂商多下功夫。
就目前情况来看,医疗大模型产品的诞生或许能够为医疗行业带来发展新机遇,帮助企业降本增效、为患者带来更加优质的就医体验,但由于医疗大模型尚处于刚刚开始发展的阶段,难关同样有很多,需要厂商们去跨越。总而言之,医疗大模型产品的推出并不意味着结束,反而是新的起点,无论是互联网大厂,还是互联网医疗企业,都不能掉以轻心,这场竞赛仍持续进行中。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
123?spm=1001.2014.3001.5501)这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】