Zotero整合DeepSeek自动帮你读文献,教程来了!

先看效果,配置了Deepseek API后,直接在Zotero里面读你整合的文献,再也不用一个个上传PDF到GPT了,再也不用担心被洋鬼子卡脖子了!国内服务器数据不出境!再也不用担心敏感文献泄露!

  • 选中文献点AskPDF:自动解析核心论点
  • 框选段落按Ctrl+R:秒变学术Q&A
  • 多选文献点综述:自动生成research gap

📢 现在!立刻!马上!给Zotero装上中国芯!(文末已附保姆级配置截图,手残党也能3分钟上车!)

论文总结

打开pdf后选择AskPDF就可以让他总结这篇PDF了

1️⃣ PDF秒变摘要生成器(图1)

图片点击GPT图标+AskPDF直接总结文献

问题提问

点击文献条目,进去PDF先Upload就可以开始让他帮你回复论文的问题了

2️⃣ 文献对话堪比真人导师(图2)

图片提问GPT相关问题

文献综述

选中4篇文献,点击AskPDF

3️⃣ 四篇文献交叉审稿,综述一键生成(图3)

图片文献综述

效果是不是很好呢?让我们看看怎么做的吧

Zotero GPT配置

🔥 手把手教学环节:

首先需要下载Zotero GPT插件,建议更新中最新Zotero7

MuiseDestiny/zotero-gpt: GPT Meet Zotero. https://github.com/MuiseDestiny/zotero-gpt?tab=readme-ov-file

图片下载GPT插件

然后在Zotero安装好插件:

图片启动GPT插件

Deepseek API配置

然后打开Deepseek官网,注册,申请API:

图片DeepSeek官网

这里登陆进去会有赠送的10块钱,也可以自己充值一点,由于价格很低,能用很久

这里创建API key,创建后把key复制过来

图片创建API key

打开Zotero设置,把API复制过去:

BaseAPI输入:https://api.deepseek.com

模型是:deepseek-chat

(可以在API文档查看)

图片不懂得可以查Deepseek文档

最终填入下列内容:

图片配置表

点击test发现向量测试失败(原因是deepseek不支持向量模型),由于大多数情况我们要读PDF,所以还需要配置一个向量模型,这里选Qwen模型,阅读英语的能力很强

Qwen向量API配置

还是先申请千问的key

图片申请通义API

虽然建议使用通义文本向量V3

图片模型选择

图片向量v3模型

所以这里URL应该输入:https://dashscope.aliyuncs.com/compatible-mode/v1/embeddings

Key就是刚才在网页申请到的Key

Model输入:text-embedding-v3

图片向量解析配置

然后测试,发现配置好了,赶快开始读文献吧,开启你的科研超能力!

DeepSeek无疑是2025开年AI圈的一匹黑马,在一众AI大模型中,DeepSeek以低价高性能的优势脱颖而出。DeepSeek的上线实现了AI界的又一大突破,各大科技巨头都火速出手,争先抢占DeepSeek大模型的流量风口。

DeepSeek的爆火,远不止于此。它是一场属于每个人的科技革命,一次打破界限的机会,一次让普通人也能逆袭契机。

DeepSeek的优点

read-normal-img

掌握DeepSeek对于转行大模型领域的人来说是一个很大的优势,目前懂得大模型技术方面的人才很稀缺,而DeepSeek就是一个突破口。现在越来越多的人才都想往大模型方向转行,对于想要转行创业,提升自我的人来说是一个不可多得的机会。

那么应该如何学习大模型

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。

read-normal-img

掌握大模型技术你还能拥有更多可能性:

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把都打包整理好,希望能够真正帮助到大家。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费在这里插入图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

read-normal-img

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

read-normal-img

👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

read-normal-img

read-normal-img

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

read-normal-img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费在这里插入图片描述

### 如何将ZoteroDeepSeek结合使用 为了实现ZoteroDeepSeek的有效结合,可以按照以下方法操作。此过程涉及两个主要部分:一是设置Zotero作为文献管理工具;二是通过特定插件或API接口引入DeepSeek的功能来增强数据分析能力。 #### 安装与配置Zotero 首先需要完成Zotero的基础安装并熟悉其基本功能。这一步骤涵盖了创建账户、下载软件以及学习如何导入和整理学术资料等内容[^1]。确保已成功建立个人数据库之后再继续下一步。 #### 添加支持AI模型处理的扩展 目前,Zotero官方并未直接提供针对DeepSeek的支持,但是可以通过第三方开发的一些脚本来间接达成目标。例如,Better BibTeX for Zotero 是一个非常有用的附加组件,它允许用户导出结构化的BibTex文件以便进一步被其他程序解析。虽然这不是专门为DeepSeek设计的解决方案,但它确实为后续集成打开了大门[^2]。 对于更深层次的交互(比如让DeepSeek直接Zotero中的条目),可能就需要依赖自定义编码了: ```javascript // 假设我们已经有了可以从Zotero API获取数据的方法getItems() function processWithDeepSeek(items){ items.forEach(item => { const textToAnalyze = item.note || ""; // 使用笔记字段作为输入给定语料库 fetch('https://api.deepseek.com/v1/analyze', { method:'POST', headers:{'Content-Type':'application/json'}, body:JSON.stringify({text:textToAnalyze}) }).then(response=>response.json()) .then(data=>{ console.log(`Analysis result:${data}`); }); }); } let allMyPapers = getItems(); processWithDeepSeek(allMyPapers); ``` 上述代码片段展示了一个简单的例子——遍历每篇文章并将它们的内容提交到假设存在的DeepSeek在线服务端口进行自然语言理解方面的评估[^3]。请注意实际部署时还需要考虑认证机制等问题。 #### 调整工作流程适应新特性 最后一点也是很重要的一环就是重新规划日常科研活动模式使之能够充分利用新增加的能力。这意味着除了记录基本信息外还应该养成习惯把更多细节写入备注区供机器学习算法挖掘潜在价值[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值