两种主流方式
- Re-ID+Kalman过滤器(预测、更新)+匈牙利算法
- GNN方法
基本步骤
①检测 ②特征提取、运动预测 ③相似度计算 ④数据关联
- 检测:上游框架,检测质量对追踪质量的影响最大
检测用于计算车辆/行人之间的特征,区分前景和背景 - 特征提取,运动预测:第t帧识别结果和前t-1帧轨迹特征的提取,包括运动特征和表观特征两种
- 运动特征:匀速运动模型、LSTM(轨迹预测)&MLP(第t帧)
- 表观特征:Re-ID(行人重识别)、CNN、光流
- 运动预测:Kalman滤波、联合概率数据关联、GNN节点消息传递
- 2D特征与3D特征的融合
- 相似度计算:分别计算detection和tracking的运动相似度和表观相似度,再将它们以某种方式融合起来得到最终的相似度矩阵
- IoU、欧氏距离、余弦距离、马氏距离、网络回归
- 数据关联:根据相似度矩阵(代价矩阵)得到最终匹配结果,二部图匹配问题
- 基于IoU的贪婪匹配,只使用运动模型,IoU作为代价矩阵进行贪婪匹配
- 全局最优、局部最优
- 匈牙利算法/KM算法
- GNN
- 基于IoU的贪婪匹配,只使用运动模型,IoU作为代价矩阵进行贪婪匹配
算法
SORT:最base的算法,用于2D追踪</