2D/3D MOT调研总结及归纳

本文详细介绍了2D/3D多目标追踪(MOT)的基本步骤,包括检测、特征提取、运动预测和数据关联。重点讨论了Re-ID+Kalman滤波器、GNN方法等主流追踪策略,以及相似度计算和数据关联的多种方法,如匈牙利算法。同时,分析了DeepSORT、AB3DMOT等算法的实现细节,并探讨了3D检测器、角速度、方向校正等因素对追踪性能的影响。此外,还提到了GNN3DMOT和EDA_GNN等最新研究进展。
摘要由CSDN通过智能技术生成

两种主流方式

  • Re-ID+Kalman过滤器(预测、更新)+匈牙利算法
  • GNN方法

基本步骤

①检测 ②特征提取、运动预测 ③相似度计算 ④数据关联

  1. 检测:上游框架,检测质量对追踪质量的影响最大
    检测用于计算车辆/行人之间的特征,区分前景和背景
  2. 特征提取,运动预测:第t帧识别结果和前t-1帧轨迹特征的提取,包括运动特征表观特征两种
    • 运动特征:匀速运动模型、LSTM(轨迹预测)&MLP(第t帧)
    • 表观特征:Re-ID(行人重识别)、CNN、光流
    • 运动预测:Kalman滤波、联合概率数据关联、GNN节点消息传递
    • 2D特征与3D特征的融合
  3. 相似度计算:分别计算detection和tracking的运动相似度和表观相似度,再将它们以某种方式融合起来得到最终的相似度矩阵
    • IoU、欧氏距离、余弦距离、马氏距离、网络回归
  4. 数据关联:根据相似度矩阵(代价矩阵)得到最终匹配结果,二部图匹配问题
    • 基于IoU的贪婪匹配,只使用运动模型,IoU作为代价矩阵进行贪婪匹配
      • 全局最优、局部最优
    • 匈牙利算法/KM算法
    • GNN

算法

SORT:最base的算法,用于2D追踪</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值