【图形学】第一章 向量 笔记

1.向量

1.1向量的性质

n维向量表示为V=<V1,V2,...Vn>

也可以用一个n行单列的矩阵表示,即

也可以用列矩阵的转置矩阵表示,即


向量的运算满足加法交换律、加法分配律

向量的,又称为向量的范数或者长度记作||V||

向量规格化,就是将向量V的模变为单位长度,即V乘以1/||V||

向量的性质:

1.2 点积

两个向量做点积的结果等于向量的每个对应的分量的乘积之和。最终结果是个标量。

可以用矩阵乘积的形式:

向量点积的几何意义为,P向量在Q向量方向上投影长度。结果也表示这两个向量指向同一方向的接近程度:正号为同一侧(锐角),负号为相反的一侧(钝角)。

向量点积的性质为:满足交换律、分配律,以及其他

下面推导一个公式:

1.P、Q点积


2.得到


3.两边同时乘以Q/||Q||单位向量,得到P到向量Q的投影



4.P相对于Q的垂直分量,是用P减去P的垂直分量



,可以将P向量分解为两个向量:一个与Q平行,一个与Q垂直


P到Q的投影是一个线性变换的过程,可以用公式表示为


1.3 叉积

叉积的结果是得到一个新的向量,并且新向量垂直于两个旧向量所在的平面。

因此,在计算机图形学中,若已知曲面上一点的两个不同的切向量,可以通过两个切向量的叉积,获得该点处的法向量。


叉积的结果为:

了方便记忆,用伪行列式表示:

其中,i,j,k分别为平行于x轴,y轴,z轴的单位向量

通过计算行列式,得到:

另外,P X Q也可以用线性变换形式表示:

推广一下,任意给定的P、Q、R向量,(PXQ)R的行列式表示为:

由于(PXQ)P=0,(PXQ)Q=0,所以,当(PXQ)R=0是,表示R是与P,Q在同一平面的,即R可以被P和Q线性表示

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

延澈左

小小心意

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值