ReID| Progressive Learning for Person Re-Identification With One Example (已读完)

文章目录

读书笔记

创新点

1、 利用了 index-labeled data
2、dynamic sampling strategy :
3、标签估计 使用 基于距离的
4、联合训练方式
5、扩展性: one-example to few-example

可能着手的切入点、

1、 标签估计 : 基于距离的
2、模型优化: 利用了反面样本
3、训练策略
4、扩展性

我的疑问

在这里插入图片描述

1、分类器f , 的作用?

在这里插入图片描述
2、NN 最近邻选择 S , 选择伪标签, 标签估计。

Introduction

1、Re-ID 从全监督到半监督

2、半监督方法中 从静态采样策略 , 到本文的 动态采样策略

选择 pseudo-labeled data , 通过设置一个预定义好的固定的阈值,当样本的可信度超过阈值,就设置为为标签。 刚开始初始化的时候, 只有很少的样本可以选择, 但随着模型迭代,将会导致更准确的预测结果。

本文: 初始化时,还是选择可信的伪标签,但随着模型的增加, 被选择的子集越来越大。 初始化的时候只选择最简单最可靠的。

之后的迭代中, 选择更多维度更困难的数据作为伪标签数据。

3、从 a labeled tracklet 到 only one image labeled for each identity。

4、训练数据: 从两种数据、到三种数据

5、 exclusive loss 排他性损失 用于优化CNN , 使用unselected index-labeled data

6、联合训练方法 joint learning method ,使用三种数据同时更新CNN模型

前两种数据,提取他们的CNN特征后, 使用分类器, 比较 ientity predictions 和 labels 。 ?

对未选择的数据, 使用 exclusive loss 优化损失。

Related Work

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

The Progressive Model

Framework

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

两个迭代过程:
1、训练CNN模型, 使用L S M 联合训练。
2、标签估计, 选择最可靠的样本估计

在第一个迭代过程: 所有无标签数据没有伪标签
在后面的迭代过程: 持续扩大选择的候选伪标签,剩下的无标签数据: index
在下个迭代过程中: 伪标签 ”通过特征空间中最近邻的已有标记邻居实体标签 分配。
(数据之间的的距离: 差异损失,用于衡量伪标签的可靠性)

公式和表示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

指代

(x,y), x 是数据, y 是标签
L = {(x1,y1),(xnl,ynl)} , the labeled data set
U= {x,x, x, … x…} , the Unlabeled date set
S = {(x,y~ ),()<()} , the pseudo-labeled set St
M , the index data set
评估stage: 先将所有查询数据 和 库 数据 , 使用训练好的CNN模型将 查询数据和库数据映射到特征空间
查询结果 the query result : 根据在gallery data 中的欧式举例排序结果
the Euclidean Distance : 未标签数据和 gallery data 的特征空间距离。
the pseudo label (xi,yi~) : 根据欧氏距离排名估计yi~

联合学习 The joint Learning Method

The Exclusive Loss : M 中, 各个index样本之间的特征距离 的最大值

在这里插入图片描述
在这里插入图片描述
通过L2正则化 , 将, 最大化欧氏距离,转化成 最小化 下列公式 softmax-like loss:

在这里插入图片描述

V 是 分数查询表, 每个index-labeled data xi 的特征
τ 控制未标记样本之间的差分级别

τ高,导致更弱的概率分布。

查询表V: 避免在每个训练步骤中从所有数据中提取特征的穷举运算。

**the foward operation : ** 计算 xi 和其他data 之间的 相似性: 在这里插入图片描述
**the backward : ** 更新表V中的 ith 列 :
在这里插入图片描述
然后L2正则化vi为一个单位向量。

无论是伪标签样本还是真实标签样本, 都能通过 探索图像之间的不同, 得到虚弱的监控信息。

The Joint Objective Function

L标签数据目标函数

在这里插入图片描述

S伪标签数据目标函数

在这里插入图片描述

目标函数 L + S + M

在这里插入图片描述

λ 用于调整, exclusive loss 和 classfication loss 之间的贡献程度。

在这里插入图片描述

The Sampleing 标签估计: 从无标签样本中选择 S 伪标签样本

基于最近邻的距离 分类器 , 而不是学好的实体分类器。

选择在特征空间中和 距离已标记的样本距离最近的 ,标记伪标签
在每个迭代步骤t中, 选择第t个迭代中的伪标签,用于训练, 通过设置下面的选择标记 st 。
在这里插入图片描述
mt : 选择的伪标签数据的大小, st , 是所有si的垂直级联

迭代过程

1、
1、在每个过程中,使用公式5优化
在这里插入图片描述
2、使用公式8估计伪标签数据
在这里插入图片描述
3、然后利用公式8估计伪标签,并将训练后的模型应用于公式9中,选择一些可靠的标签。

4、不要在初始迭代的过程中加入太多伪标签数据。

动态采样策略

在开始阶段从一小部分伪标记数据开始,然后在接下来的阶段中合并更多不同的样本。
在开始阶段伪标记数据的比例,然后在后续阶段合并更多不同的样本。

在这里插入图片描述

开始阶段:

1、 设置 m0 = 0 , M0 = U
2、优化模型 :
1) identify classification training : L
2) unsupervised training by exclusive losss : U (其实就是M )

后续迭代:

1、 逐步增加伪标签采样数据集的容量: 设置 mt = ,其中p 在(0,1)之间, 扩大因子, 用于控制 每次迭代采样的速度。
在这里插入图片描述

Experimental analysis

Evaluation Metrics

CMC :

the Cumulative Matching Characteristic (CMC)
累计匹配特性

mAP :

the mean average precision 均值平均精度
The mAP is calculated as the mean value of average precision across all queries.

AP : average precision

排名1,排名5,排名10,排名20的分数来表示CMC曲线。CMC得分反映的是检索精度,而mAP反映的是召回率。

在这里插入图片描述

Experiment Setting

1、 随机选择一个图像 ,作为初始化。

2、 使用 ResNet-50 , 去掉其最后的分类陈, 作为本文模型的特征提取模型 φ

3、 使用ImageNet 预训练模型初始化ResNet-50

4、为了优化模型的标签损失,在CNN特征提取器顶部 追加并批处理规范的(batch normalization)一个 额外的全连接层 + 一个分类层

5、exclusive loss , 通过一个标准化的全连接层处理 the unlabeled feature ,再追加一个L2-normalization 操作。

6、temperature scalar τ = 0.1 , 未标记样本之间的差分级别

7、 λ=0.8: exclusive loss 和 classification loss 之间的贡献程度。

8、 每个模型更新步骤, SGD设置为: momentum = 0.5 , weight decay = 0.0005 ,

9、 70 epochs , batch size 16 .

10 、learning rate 学习率 : 初始化为0.1 ,

11、在最后15个epochs : 设置λ= 1 ,学习率= 0.01

12、在CNN提取器最后,增加了一个 时间平均池化层(temporal average), 在这里,明智的将所有frame的 特征平均化。

在这里插入图片描述在这里插入图片描述

Ablation Studies

1、 Joint learing method 联合学习方法

2、 Dissmilarity criterion 差异性标准
在这里插入图片描述

结论

1、基于视频的任务(MARS)的改进相对较小。主要原因是基于视频的re-ID任务中的一个示例初始模型比基于图像的初始模型要健壮得多,因为初始轨迹包含许多相同身份的图像(火星上平均62帧)。从精度上可以看出,初始轨迹包含许多相同身份的图像(火星上平均62帧)。

2、利用一个相对稳健的模型对未标记的数据进行挖掘可能对特征学习没有太大的帮助。

在这里插入图片描述
The label estimation accuracy and re-ID performances of sampling by classification the classification loss as the criterion. The label estimation accuracy and re-ID performances of sampling by classification loss and by dissimilarity cost are illustrated in Figure 3 and Table III. We observe the huge performance gaps in Figure 3 for both label estimation and evaluation.

3、图三是标签估计准确率, 和 分类措施采样的性能, 和 差异性损失D 。 recall= mAP ?

D: 使用分类损失作为评价标准

** 结论:**
1) 这两种评价损失,, 都在stage 刚开始时, 实现了相似, 并且高准确率。
2)随着伪标签数据的逐渐增加, 这两种评价损失标准的差距逐渐拉大。
3) the classification loss 的结果表明,该评价loss 的性能在刚开始是增强, 但在之后的序列中迅速的下降。
4) the dissmilarity loss 的性能总是更好。

在这里插入图片描述

结果分析

由于我们只收集了几个最可靠的未标记样本作为伪标记数据,因此标签估计的精度在一开始就比较高。随着迭代的进行,我们将更多的未标记数据引入伪标记集中,导致标签估计的精度不断下降。然而,在这一过程中,标签估计的召回分数随着使用更正确的伪标签数据而逐渐增加。总体标签估计性能F-score在前几次迭代中出现快速增长,在最后一次迭代中性能略有下降。有趣的是,re-ID的评价绩效(Rank-1和mAP得分)与F-score呈现出相似的曲线,这表明标签估计质量是一个示例任务的关键因素。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值