用RAG的思路构建文档级别知识图谱构建框架-RAKG

GraphRAG经过一些场景验证KG+LLM的范式能够有效的增强RAG系统性能,对于如何联合文档建立多模态的GraphRAG,笔者之前也有过相关分享,如:《多模态GraphRAG初探:文档智能+知识图谱+大模型结合范式,https://mp.weixin.qq.com/s/coMc5jNPJldPk9X74tDAbA》。

下面我们来看一个用RAG的思路构建文档级别知识图谱构建框架思路,这个思路要解决的问题是如何自动构建文档级别的知识图谱。传统的知识图谱构建方法面临长文本处理中的长距离遗忘问题复杂实体消歧跨文档知识整合不足的问题。整体思路可以参考下。

方法


上图的流程:RAKG框架通过句子分割和向量化处理文档,提取初步实体,并执行实体消歧和向量化。处理后的实体经过语料库回顾检索以获取相关文本和图结构检索以获取相关知识图谱。随后,使用LLM整合检索到的信息以构建关系网络,这些网络针对每个实体进行合并。最后,新构建的知识图谱与原始知识图谱相结合。

A. 理想知识图谱的假设

RAKG假设存在一个理论上完美的知识图谱构建过程,该过程可以将文档转换为一个理想的完备知识图谱。这个理想知识图谱可以表示为:

K G ∗ = Construct ⁡ ( D ) KG^* = \operatorname{Construct}(D) KG=Construct(D)

其中, K G ∗ KG^* KG 是从文档 D D D 构建出来的理想知识图谱,包含所有的语义关系。

B. 知识库向量化

RAKG将文档和知识图谱进行向量化处理,便于后续的检索和生成操作。

  1. 文档分块和向量化: 文档被分割成多个文本块(chunks),通常以句子为单位进行分割。每个文本块被向量化,以便于后续的处理和分析。类似RAG,这种方法能够减少LLM每次处理的信息量,同时确保每个片段的语义完整性,从而提高了命名实体识别的准确性。

  2. 知识图谱向量化: 初始知识图谱中的每个节点(如实体)通过提取其名称和类型来进行向量化。使用 BGE-M3 模型进行向量化,便于在检索过程中使用。

C. 预实体构建

RAKG通过命名实体识别(NER)来识别文本中的实体,并将这些实体作为预实体进行处理。

  1. 实体识别和向量化: NER的整个过程由LLM(Qwen2.5-72B)完成。先对每个文本块进行命名实体识别,识别出其中的实体。接着为每个预实体分配类型和属性描述,区分具有相似名称的不同实体。最后将实体的名称和类型组合后进行向量化。

  2. 实体消歧: 在完成整个文档的实体识别和向量化后,进行相似性检查。对于相似度超过阈值的实体,进行进一步的消歧处理,以确保每个实体只有一个唯一表示。

D. 关系网络构建

RAKG通过RAG的方法来构建关系网络

  1. 文档文本块检索: 对于指定的实体,通过文本块的标识符(chunk-id)检索相关的文本块。使用向量检索获取与选定实体相似的文本块。

  2. 图结构检索: 在初始知识图谱中进行向量检索,获取与选定实体相似的其他实体及其关系网络。

  3. 关系网络生成和评估: 将检索到的文本和关系网络信息整合,并输入到LLM中,以生成中心实体的属性和关系。使用LLM作为评判者来评估生成的三元组,确保其真实性和准确性。

    LLM作为裁判的过程:提取的实体与源文本进行核对以消除幻觉
。检索器使用实体获取相关文本和知识图谱,构建关系网络。然后验
证该网络与检索信息的一致性。

E. 知识图谱融合

RAKG将新构建的知识图谱与初始知识图谱进行融合。自然而然,KG融合有两点核心内容。

  1. 实体合并: 将新知识图谱中的实体与初始知识图谱中的实体进行消歧和合并,确保实体的一致性。

  2. 关系整合: 将新知识图谱中的关系与初始知识图谱中的关系进行整合,以获得更全面的知识图谱。

评估指标

评估指标主要是评估KG的,正好复习下KG的常见评估指标。

1. 实体密度(Entity Density, ED)

实体密度是指知识图谱中实体的数量。公式如下:

E D = N e ED = N_e ED=Ne

其中, N e N_e Ne 表示知识图谱中提取的实体数量。实体密度越高,通常意味着从文本中提取的信息越多,知识图谱的覆盖范围越广。

2. 关系丰富度(Relationship Richness, RR)

关系丰富度是指知识图谱中关系的数量相对于实体数量的比率。公式如下:

R R = N r N e RR = \frac{N_r}{N_e} RR=NeNr

其中, N r N_r Nr 表示知识图谱中提取的关系数量。关系丰富度越高,说明知识图谱中实体之间的关系越复杂,能够更好地捕捉实体之间的交互。

3. 实体保真度(Entity Fidelity, EF)

实体保真度用于评估提取的实体的可信度。公式如下:

E F = 1 N e ∑ i = 1 N e LLMJudge ⁡ entity ( e i , retriever ⁡ V T ( e i ) ) EF = \frac{1}{N_e} \sum_{i=1}^{N_e} \operatorname{LLMJudge}_{\text{entity}}(e_i, \operatorname{retriever}_{V_T}(e_i)) EF=Ne1i=1NeLLMJudgeentity(ei,retrieverVT(ei))

其中, LLMJudge ⁡ entity \operatorname{LLMJudge}_{\text{entity}} LLMJudgeentity 是一个函数,用于评估每个提取的实体 e i e_i ei 的可信度。它基于LLM对实体的判断,并返回一个介于0和1之间的值,表示实体的可信度。

4. 关系保真度(Relationship Fidelity, RF)

关系保真度用于评估提取的关系的可信度。公式如下:

R F = 1 N r ∑ i = 1 N r LLMJudge ⁡ rel ( e i , retriever ⁡ V T ( e i ) , retriever ⁡ V k g ( e i ) ) RF = \frac{1}{N_r} \sum_{i=1}^{N_r} \operatorname{LLMJudge}_{\text{rel}}(e_i, \operatorname{retriever}_{V_T}(e_i), \operatorname{retriever}_{V_{kg}}(e_i)) RF=Nr1i=1NrLLMJudgerel(ei,retrieverVT(ei),retrieverVkg(ei))

其中, LLMJudge ⁡ rel \operatorname{LLMJudge}_{\text{rel}} LLMJudgerel 是一个函数,用于评估每个提取的关系 r i r_i ri 的可信度。它基于LLM对关系的判断,并返回一个介于0和1之间的值,表示关系的可信度。

5. 准确性(Accuracy)

准确性是指知识图谱在问答任务中的表现。通过构建的知识图谱来回答问题的准确率。较高的准确性意味着知识图谱能够更好地保留文本的语义信息。

6. 实体覆盖率(Entity Coverage, EC)

实体覆盖率衡量的是评估知识图谱中的实体与标准知识图谱中的实体之间的匹配程度。公式如下:

E C = ∣ E ∩ E ∗ ∣ ∣ E ∗ ∣ EC = \frac{|E \cap E^*|}{|E^*|} EC=EEE

其中, E E E 是评估知识图谱中的实体集合, E ∗ E^* E 是标准知识图谱中的实体集合。实体覆盖率越高,说明知识图谱在实体层面的完整性越好。

7. 关系网络相似度(Relation Network Similarity, RNS)

关系网络相似度衡量的是评估知识图谱与标准知识图谱在关系层面上的相似度。公式如下:

R N S = ∑ e i ∈ E ∩ E ∗ ( RelSim ⁡ i × EntityWeight ⁡ i ) RNS = \sum_{e_i \in E \cap E^*} (\operatorname{RelSim}_i \times \operatorname{EntityWeight}_i) RNS=eiEE(RelSimi×EntityWeighti)

其中, RelSim ⁡ i \operatorname{RelSim}_i RelSimi 表示评估知识图谱和标准知识图谱中相同实体的关系网络的相似度, EntityWeight ⁡ i \operatorname{EntityWeight}_i EntityWeighti 是对应实体的权重。关系网络相似度越高,说明知识图谱在关系层面的准确性越好。

这些指标用于全面评估知识图谱的质量,确保其在实体提取、关系构建和整体准确性方面的表现。

实验效果

RAKG实现了95.81%的准确率,优于KGGen(86.48%)和GraphRAG(89.71%)

了RAKG、GraphRAG和KGGen生成的知识图的实体密度和关系丰富度。结果表明,RAKG产生的实体比GraphRAG和KGGen更密集,关系更丰富。

LLM作为评委的结果:实体通过率约为91.33%,关系网络通过率大约为94.51%。

参考文献:RAKG:Document-level Retrieval Augmented Knowledge Graph
Construction,https://arxiv.org/pdf/2504.09823

基于大模型 RAG 知识库与知识图谱的问答平台-详细文档+全部资料+优秀项目,该项目是个人毕设项目,答辩评审分达到98分,代码都经过调试测试,确保可以运行!欢迎下载使用,可用于小白学习、进阶。该资源主要针对计算机、通信、人工智能、自动化等相关专业的学生、老师或从业者下载使用,亦可作为期末课程设计、课程大作业、毕业设计等。项目整体具有较高的学习借鉴价值!基础能力强的可以在此基础上修改调整,以实现不同的功能。 基于大模型 RAG 知识库与知识图谱的问答平台-详细文档+全部资料+优秀项目基于大模型 RAG 知识库与知识图谱的问答平台-详细文档+全部资料+优秀项目基于大模型 RAG 知识库与知识图谱的问答平台-详细文档+全部资料+优秀项目基于大模型 RAG 知识库与知识图谱的问答平台-详细文档+全部资料+优秀项目基于大模型 RAG 知识库与知识图谱的问答平台-详细文档+全部资料+优秀项目基于大模型 RAG 知识库与知识图谱的问答平台-详细文档+全部资料+优秀项目基于大模型 RAG 知识库与知识图谱的问答平台-详细文档+全部资料+优秀项目基于大模型 RAG 知识库与知识图谱的问答平台-详细文档+全部资料+优秀项目基于大模型 RAG 知识库与知识图谱的问答平台-详细文档+全部资料+优秀项目基于大模型 RAG 知识库与知识图谱的问答平台-详细文档+全部资料+优秀项目基于大模型 RAG 知识库与知识图谱的问答平台-详细文档+全部资料+优秀项目基于大模型 RAG 知识库与知识图谱的问答平台-详细文档+全部资料+优秀项目基于大模型 RAG 知识库与知识图谱的问答平台-详细文档+全部资料+优秀项目基于大模型 RAG 知识库与知识图谱的问答平台-详细文档+全部资料+优秀项目基于大模型 RAG 知识库与知识图谱的问答平台-详细文档+全部资料+优秀项目基于大模型 RAG 知识库与知识图谱的问答平台-
<think>嗯,用户想了解如何构建本地RAG知识库的知识图谱。首先,我需要明确RAG知识图谱的关系。RAG是检索增强生成,结合了检索和生成模型,而知识图谱则是结构化的数据表示方式,用实体和关系来组织信息。用户可能希望将两者结合,提升本地知识库的查询效率和生成质量。 首先,我得回忆一下构建知识图谱的基本步骤,可能包括数据收集、处理、实体识别、关系抽取、存储等。但结合到RAG的话,可能需要考虑如何将知识图谱集成到RAG的流程中,比如在检索阶段利用图谱的结构化信息来增强检索效果。 接下来,用户提到的是“本地”RAG知识库,所以需要注意本地环境的资源限制,比如数据量、计算能力。可能需要推荐一些轻量级的工具,比如Neo4j的社区版,或者使用Python的库如spaCy进行实体识别。 然后,步骤分解。首先数据准备,可能需要处理各种格式的文档,如PDF、Word、文本等。然后信息抽取,这一步是关键,需要用NLP技术提取实体和关系。存储部分,图数据库的选择和设计很重要,要确保能够高效查询。之后与RAG集成,可能需要将知识图谱的信息作为检索的一部分,或者用于生成时的上下文增强。 用户可能遇到的难点是在信息抽取阶段,特别是关系抽取的准确性。这里可能需要用到预训练模型,比如BERT,或者使用现有的工具如Stanford NLP库。另外,知识图谱的更新和维护也是一个问题,需要考虑如何自动化或半自动化地处理新数据。 还要考虑评估和优化,比如如何测试知识图谱RAG效果的影响,可能需要设计一些实验对比有无知识图谱时的生成质量。同时,性能优化方面,比如图数据库的索引优化,查询语句的优化等。 用户可能没有明确提到的需求包括数据隐私和安全性,因为是本地部署,这点可能很重要。需要确保数据处理和存储符合隐私要求,特别是在处理敏感信息时。 总结下来,回答的结构应该分步骤,每个步骤详细说明方法和工具,同时指出可能的挑战和解决方案。需要保持语言清晰,技术细节适当,不过于晦涩,让用户能一步步跟着操作。同时推荐一些具体的工具和框架,帮助用户实际实施。</think>构建本地RAG知识库的知识图谱可分为以下步骤,需结合数据处理、知识抽取和图谱存储技术: ### 一、数据准备阶段 1. **数据采集** - 本地文档:整理PDF、Word、TXT等格式文件 $$ \text{数据源} = \{D_1, D_2, ..., D_n\} \quad \text{其中} D_i \in \{\text{文档集合}\} $$ - 结构化数据:导入数据库表格、CSV等 2. **文本预处理** - 清洗:去除特殊符号、停用词 - 分句:使用NLP工具(如spaCy)切分语义单元 - 向量化:通过Embedding模型(如BERT)生成文本向量 ### 二、知识抽取 1. **实体识别** - 工具选择:Stanford NER、spaCy或训练BiLSTM-CRF模型 $$ P(e|s) = \prod_{t=1}^T P(e_t|s_t) $$ - 实体类型:人物、地点、事件等自定义类别 2. **关系抽取** - 规则匹配:基于依存句法分析构建模式 - 深度学习:使用预训练模型(REBEL、OpenIE) - 三元组生成:形成(头实体,关系,尾实体)结构 ### 三、图谱构建 1. **图数据库选型** - Neo4j(Cypher查询语言) - JanusGraph(分布式架构) - NebulaGraph(高性能场景) 2. **模式设计** ```cypher CREATE (e1:Entity {name:'AI'})-[:SUBCLASS_OF]->(e2:Entity {name:'Technology'}) ``` 3. **数据导入** - 批量导入:使用APOC工具导入CSV - 增量更新:设置定时ETL流程 ### 四、RAG集成 1. **检索增强** -知识图谱作为检索源 - 混合查询:结合向量检索和图遍历 $$ \text{Score} = \alpha \cdot \text{BM25} + \beta \cdot \text{GraphRel} $$ 2. **生成优化** - 将图谱路径作为prompt上下文 - 使用GNN增强生成模型的知识感知能力 ### 五、实践建议 1. **工具链推荐** - 轻量级方案:spaCy + NetworkX + FAISS - 企业级方案:Apache Jena + TensorFlow GNN + Milvus 2. **常见问题处理** - 歧义消解:建立实体消歧规则库 - 数据冲突:设计版本控制机制 - 性能优化:对高频查询建立子图索引 3. **评估指标** - 图谱质量:F1值、关系准确率 - 检索效果:MRR@10、NDCG@5 - 生成质量:ROUGE、BLEU评分 ### 六、典型应用场景 1. 企业文档智能问答 2. 科研文献关联发现 3. 法律案例推理系统 需注意:知识图谱构建需持续迭代,建议初期聚焦核心实体关系,逐步扩展覆盖范围。实际部署时建议配合日志分析模块,持续监控知识盲区。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值