YOLOv11 改进 - 特征融合 | SSFF+TPE+CPAM 协同,ASF-YOLO 三重模块破解密集小目标分割难题

部署运行你感兴趣的模型镜像

前言

本文介绍了基于注意力尺度序列融合的ASF - YOLO模型在YOLOv11中的结合应用。ASF - YOLO旨在实现准确快速的细胞实例分割,结合空间和尺度特征,引入SSFF模块增强多尺度信息提取能力,TFE模块融合不同尺度特征图,CPAM整合前两者以关注信息丰富通道和小物体。我们将ASF - YOLO相关模块集成进YOLOv11,替代原有的部分特征融合模块,实现更高效的特征提取与融合。实验证明,YOLOv11 - ASFYOLO在细胞实例分割任务中表现出色,展现了该模型在深度学习中的广泛应用前景。

文章目录: YOLOv11改进大全:卷积层、轻量化、注意力机制、损失函数、Backbone、SPPF、Neck、检测头全方位优化汇总

专栏链接: YOLOv11改进专栏

介绍

image-20240628111717251

摘要

我们提出了一种新颖的基于注意力尺度序列融合的YOLO框架(ASF-YOLO),该框架结合了空间和尺度特征,用于准确且快速的细胞实例分割。在YOLO分割框架的基础上,我们采用了尺度序列特征融合(SSFF)模块来增强网络的多尺度信息提取能力,并使用三重特征编码器(TFE)模块来融合不同尺度的特征图以增加细节信息。我们进一步引入了通道和位置注意力机制(CPAM)来整合SSFF和TFE模块,专注于信息丰富的通道和与空间位置相关的小物体,从而提高检测和分割性能。在两个细胞数据集上的实验验证表明,所提出的ASF-YOLO模型具有显著的分割精度和速度。在2018年数据科学竞赛数据集上,它达到了0.91的box mAP,0.887的mask mAP,以及47.3 FPS的推理速度,性能优于最先进的方法。源代码可在此处获取。

文章链接

论文地址:论文地址

代码地址:

您可能感兴趣的与本文相关的镜像

Yolo-v5

Yolo-v5

Yolo

YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的Joseph Redmon 和Ali Farhadi 开发。 YOLO 于2015 年推出,因其高速和高精度而广受欢迎

<think>嗯,用户这次的问题非常具体,是关于在YOLOv8的Neck部分集成ASF-YOLO的三个核心模块。从用户提供的引用内容看,ta应该已经查阅过相关资料,但需要具体的实现指导。用户可能正在做目标检测相关的项目或研究,特别是医学图像分割这类小目标密集的场景。 用户引用的三篇资料都强调了SSFF、TFE和CPAM模块小目标检测的提升效果,尤其是CPAM模块的通道和位置注意力机制。这说明用户的核心诉求可能是解决小目标漏检问题。不过用户没有明确说用的YOLOv8版本,v5到v10的改进方案其实有差异,这点需要提醒。 上次我给的代码框架是v5版本的,这次需要调整为YOLOv8结构。注意到YOLOv8的Neck默认是PAFPN架构,而ASF-YOLOSSFF模块是多尺度特征融合,正好可以替换PAFPN中的某些部分。TFE模块作为特征编码器更适合插入在Backbone和Neck之间,CPAM则应该放在Neck末端。 用户没有提供具体数据集信息,但引用[2][3]都提到医学图像,所以代码里保留了预处理参数示例。不过要注意医学影像通常需要特殊的归一化方式,比如CT值窗宽调整,这个在代码注释里可以补充说明。 实现难点在于CPAM模块的通道注意力和空间注意力集成。原论文用CBAM变体,但YOLOv8的Neck输出是元组,需要先进行维度变换。另外TFE模块三重卷积在部署时可能增加延时,如果用户关注推理速度,可以建议用深度可分离卷积替代。 实验环节的说明很重要。用户可能对性能提升有迫切需求,所以特别强调消融实验和可视化对比。考虑到医学影像标注成本高,用小样本学习的t-SNE可视化能更直观展示特征优化效果。 最后生成的问题都围绕优化细节,因为用户既然在修改Neck结构,后续肯定会遇到参数调试和效果验证的问题。特别是注意力热力图可视化,对论文写作很有帮助,所以单独列为一个问题。 </think>在 YOLOv8 的 Neck 部分引入 ASF-YOLOSSFF、TFE 和 CPAM 三个模块,需修改模型结构并调整特征处理流程。以下是具体实现方法(以 PyTorch 框架为例): --- ### **1. 模块定义** ```python import torch import torch.nn as nn from torch.nn import functional as F # 1.1 SSFF 模块 (尺度序列特征融合) class SSFF(nn.Module): def __init__(self, in_channels, reduction=16): super().__init__() self.conv1 = nn.Conv2d(in_channels, in_channels // reduction, 1) self.conv2 = nn.Conv2d(in_channels // reduction, in_channels, 1) def forward(self, x): pooled = F.adaptive_avg_pool2d(x, 1) weights = torch.sigmoid(self.conv2(F.relu(self.conv1(pooled)))) return x * weights # 1.2 TFE 模块 (三重特征编码器) class TFE(nn.Module): def __init__(self, in_channels): super().__init__() self.branch1 = nn.Conv2d(in_channels, in_channels, 3, padding=1, groups=in_channels) self.branch2 = nn.Conv2d(in_channels, in_channels, 3, dilation=3, padding=3) self.branch3 = nn.Conv2d(in_channels, in_channels, 1) self.fuse = nn.Conv2d(in_channels*3, in_channels, 1) def forward(self, x): b1 = self.branch1(x) b2 = self.branch2(x) b3 = self.branch3(x) return self.fuse(torch.cat([b1, b2, b3], dim=1)) # 1.3 CPAM 模块 (通道和位置注意力机制) class CPAM(nn.Module): def __init__(self, in_channels): super().__init__() # 通道注意力 self.ca = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(in_channels, in_channels//16, 1), nn.ReLU(), nn.Conv2d(in_channels//16, in_channels, 1), nn.Sigmoid() ) # 空间注意力 self.sa = nn.Sequential( nn.Conv2d(in_channels, 1, 1), nn.Sigmoid() ) def forward(self, x): ca_weight = self.ca(x) sa_weight = self.sa(x) return x * ca_weight * sa_weight ``` --- ### **2. YOLOv8 Neck 集成** 在 YOLOv8 的 `tasks.py` 或自定义 Neck 类中修改: ```python class ASFYOLONeck(nn.Module): def __init__(self, in_channels=[256, 512, 1024], out_channels=256): super().__init__() # 原始 Neck 的上采样和下采样层 self.upsample = nn.Upsample(scale_factor=2, mode='nearest') self.downsample = nn.MaxPool2d(2, stride=2) # 添加 ASF-YOLO 模块 self.tfe = nn.ModuleList([TFE(ch) for ch in in_channels]) self.ssff = nn.ModuleList([SSFF(ch) for ch in in_channels]) self.cpam = CPAM(out_channels * 3) # 合并三尺度特征后的通道数 # 卷积层调整通道 self.convs = nn.ModuleList([ nn.Conv2d(in_channels[i], out_channels, 1) for i in range(len(in_channels)) ]) def forward(self, features): # 输入: 来自 Backbone 的三个尺度特征 [f1, f2, f3] f1, f2, f3 = features # 1. TFE 模块处理各尺度特征 f1_tfe = self.tfe[0](f1) f2_tfe = self.tfe[1](f2) f3_tfe = self.tfe[2](f3) # 2. SSFF 模块融合多尺度信息 p3 = self.convs[0](self.ssff[0](f3_tfe)) p2 = self.convs[1](self.ssff[1](f2_tfe)) + self.upsample(p3) p1 = self.convs[2](self.ssff[2](f1_tfe)) + self.upsample(p2) # 3. 合并特征并应用 CPAM fused = torch.cat([p1, self.downsample(p2), self.downsample(self.downsample(p3))], dim=1) output = self.cpam(fused) return output ``` --- ### **3. 模型配置调整** 在 YOLOv8 的 YAML 配置文件中修改 Neck: ```yaml # yolov8.yaml neck: name: ASFYOLONeck in_channels: [128, 256, 512] # 根据实际 Backbone 输出调整 out_channels: 256 ``` --- ### **4. 关键改进说明** 1. **特征处理流程** $$ \text{Backbone} \rightarrow \boxed{\text{TFE}} \rightarrow \boxed{\text{SSFF}} \rightarrow \boxed{\text{CPAM}} \rightarrow \text{Head} $$ - TFE 增强单尺度特征表达能力; - SSFF 实现跨尺度动态加权融合; - CPAM 在通道和空间维度自适应聚焦关键区域[^3]。 2. **医学图像优化** - 针对小目标SSFF 提升多尺度特征兼容性; - 针对密集目标:CPAM 抑制背景干扰,增强目标区域响应[^2]。 3. **计算效率** TFE 中使用分组卷积(`groups=in_channels`)减少参数量,保持实时性。 --- ### **5. 实验验证建议** ```python # 示例训练配置 model = YOLO("yolov8n.yaml") model.neck = ASFYOLONeck(in_channels=[128,256,512], out_channels=256) results = model.train( data="cells.yaml", # 医学细胞数据集 imgsz=640, attention_visualize=True # 可视化 CPAM 注意力热力图 ) ``` - 消融实验需验证各模块贡献: $$ \text{Baseline} < +\text{TFE} < +\text{SSFF} < +\text{CPAM} $$ - 指标关注:小目标 AP($\text{AP}_{\text{S}}$)和推理速度(FPS)[^1]。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魔改工程师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值