前言
本文介绍了YOLO-MS目标检测器及其在YOLOv11中的结合应用。YOLO-MS通过研究不同核心大小卷积对不同尺度物体检测性能的影响,提出新策略增强实时目标检测器多尺度特征表示能力。其创新点包括设计MS-Block增强多尺度特征提取能力、采用异构Kernel选择协议提升不同尺寸目标检测性能、平衡高效性能与准确性,且核心组件可即插即用。我们将C3k2_MSBlock集成进YOLOv11,替换部分模块。实验表明,改进后的YOLOv11在目标检测任务中表现出色,提升了检测性能。
文章目录: YOLOv11改进大全:卷积层、轻量化、注意力机制、损失函数、Backbone、SPPF、Neck、检测头全方位优化汇总
专栏链接: YOLOv11改进专栏
介绍

摘要
我们旨在为目标检测领域提供一种高效且性能卓越的目标检测器,称为YOLO-MS。其核心设计基于一系列调查研究,关于不同核心大小的卷积如何影响不同尺度物体的检测性能。研究结果是一种新策略,能够显著增强实时目标检测器的多尺度特征表示能力。为验证我们策略的有效性,我们构建了一个网络架构,命名为YOLO-MS。我们从零开始在MS COCO数据集上训练我们的YOLO-MS,不依赖于任何其他大规模数据集,如ImageNet,或预训练权重。无需任何附加装置,我们的YOLO-MS就超越了最新的实时目标检测器,包括YOLO-v7和RTMDet,当使用可比较的参数数量和FLOPs时。以YOLO-MS的XS版本为例,仅有4.5M的可学习参数和8.7G FLOPs,就能在MS COCO上达到43%+的AP得分,比相同模型大小的RTMDet高出约2%+。此外,我们的工作还可以作为一个即插即用的模块用于其他YOLO模型。通常,我们的方法显著提高了YOLOv8的AP,从37%+提高到了40%+,而且使用的参数和FLOPs还更少。
创新点
-
多尺度构建块(MS-Block)设计:YOLO-MS引入了MS-Block,一个具有分层特征融合策略的构建块,旨在增强实时目标检测器在提取多尺度特征时的能力。M
订阅专栏 解锁全文
3万+

被折叠的 条评论
为什么被折叠?



