扩展卡尔曼滤波EKF与多传感器融合

原创 2017年11月07日 17:49:10

Extended Kalman Filter(扩展卡尔曼滤波)是卡尔曼滤波的非线性版本。在状态转移方程确定的情况下,EKF已经成为了非线性系统状态估计的事实标准。本文将简要介绍EKF,并介绍其在无人驾驶多传感器融合上的应用。

这里写图片描述

KF与EKF

本文假定读者已熟悉KF,若不熟悉请参考卡尔曼滤波简介

KF与EKF的区别如下:

  1. 预测未来:x=Fx+ux=f(x,u)代替;其余FFj代替。
  2. 修正当下:将状态映射到测量的Hxh(x)代替;其余HHj代替。

其中,非线性函数f(x,u)h(x)用非线性得到了更精准的状态预测值、映射后的测量值;线性变换FjHj通过线性变换使得变换后的xz仍满足高斯分布的假设。

FjHj计算方式如下:

Fjb=f(x,u)x=h(x)x

这里写图片描述

为什么要用EKF

KF的假设之一就是高斯分布的x预测后仍服从高斯分布,高斯分布的x变换到测量空间后仍服从高斯分布。可是,假如FH是非线性变换,那么上述条件则不成立。

将非线性系统线性化

既然非线性系统不行,那么很自然的解决思路就是将非线性系统线性化。

对于一维系统,采用泰勒一阶展开即可得到:

f(x)f(μ)+f(μ)x(xμ)

对于多维系统,仍旧采用泰勒一阶展开即可得到:

T(x)f(a)+(xa)TDf(a)

其中,Df(a)是Jacobian矩阵。

多传感器融合

lidar与radar

本文将以汽车跟踪为例,目标是知道汽车时刻的状态x=(px,py,vx,vy)。已知的传感器有lidar、radar。

  • lidar:笛卡尔坐标系。可检测到位置,没有速度信息。其测量值z=(px,py)
  • radar:极坐标系。可检测到距离,角度,速度信息,但是精度较低。其测量值z=(ρ,ϕ,ρ˙),图示如下。

这里写图片描述

传感器融合步骤

这里写图片描述

步骤图如上所示,包括:

  1. 收到第一个测量值,对状态x进行初始化。
  2. 预测未来
  3. 修正当下

初始化

初始化,指在收到第一个测量值后,对状态x进行初始化。初始化如下,同时加上对时间的更新。

对于radar来说,

pxpyvxvy=10000100[pxpy]

对于radar来说,

pxpyvxvy=ρcosϕρsinϕρ˙cosϕρ˙sinϕ

预测未来

预测主要涉及的公式是:

xP=Fx=FPFT+Q

需要求解的有三个变量:FPQ


F表明了系统的状态如何改变,这里仅考虑线性系统,F易得:

Fx=10000100dt0100dt01pxpyvxvy


P表明了系统状态的不确定性程度,用x的协方差表示,这里自己指定为:

P=1000010000100000001000


Q表明了x=Fx未能刻画的其他外界干扰。本例子使用线性模型,因此加速度变成了干扰项。x=Fx中未衡量的额外项目v为:

v=axdt22aydt22axdtaydt=dt220dt00dt220dt[axay]=Ga

v服从高斯分布N(0,Q)

Q=E[vvT]=E[GaaTGT]=GE[aaT]GT=G[σ2ax00σ2ay]GT=dt44σ2ax0dt32σ2ax00dt44σ2ay0dt32σ2aydt32σ2ax0dt2σ2ax00dt32σ2ay0dt2σ2ay

修正当下

lidar

lidar使用了KF。修正当下这里牵涉到的公式主要是:

ySKxP=zHx=HPHT+R=PHTS1=x+Ky=(IKH)P

需要求解的有两个变量:HR


H表示了状态空间到测量空间的映射。

Hx=[10010000]pxpyvxvy


R表示了测量值的不确定度,一般由传感器的厂家提供,这里lidar参考如下:

Rlaser=[0.0225000.0225]

radar

radar使用了EKF。修正当下这里牵涉到的公式主要是:

ySKxP=zf(x)=HjPHTj+R=PHTjS1=x+Ky=(IKHj)P

区别与上面lidar的主要有:

  1. 状态空间到测量空间的非线性映射f(x)
  2. 非线性映射线性化后的Jacob矩阵
  3. radar的Rradar

状态空间到测量空间的非线性映射f(x)如下

f(x)=ρϕρ˙=p2x+p2yarctanpypxpxvx+pyvyp2x+p2y


非线性映射线性化后的Jacob矩阵Hj

Hj=f(x)x=ρpxϕpxρ˙pxρpyϕpyρ˙pyρvxϕvxρ˙vxρvyϕvyρ˙vy


R表示了测量值的不确定度,一般由传感器的厂家提供,这里radar参考如下:

Rlaser=0.090000.00090000.09

传感器融合实例

多传感器融合的示例如下,需要注意的有:

  1. lidar和radar的预测部分是完全相同的
  2. lidar和radar的参数更新部分是不同的,不同的原因是不同传感器收到的测量值是不同的
  3. 当收到lidar或radar的测量值,依次执行预测、更新步骤
  4. 当同时收到lidar和radar的测量值,依次执行预测、更新1、更新2步骤

这里写图片描述

多传感器融合的效果如下图所示,红点和蓝点分别表示radar和lidar的测量位置,绿点代表了EKF经过多传感器融合后获取到的测量位置,取得了较低的RMSE。

这里写图片描述

卡尔曼滤波(KF)与扩展卡尔曼滤波(EKF)的一种理解思路及相应推导(1)

前言: 从上个世纪卡尔曼滤波理论被提出,卡尔曼滤波在控制论与信息论的连接上做出了卓越的贡献。为了得出准确的下一时刻状态真值,我们常常使用卡尔曼滤波、扩展卡尔曼滤波、无迹卡尔曼滤波、粒子滤波等等方法,这...
  • qq_18163961
  • qq_18163961
  • 2016-09-11 19:22:30
  • 19610

PX4飞控中利用EKF估计姿态角代码详解

PX4飞控中利用EKF估计姿态角代码详解PX4飞控中主要用EKF算法来估计飞行器三轴姿态角,具体c文件在px4\Firmware\src\modules\attitude_estimator_ekf\...
  • lizilpl
  • lizilpl
  • 2015-05-06 23:06:17
  • 38896

EKF2学习笔记之运行流程1

2017.8.3 by snow src/moudule/ekf2/ekf2_main.cpp void Ekf2::task_main() 1.do subscribe sensors update...
  • snowpang
  • snowpang
  • 2017-08-03 03:14:26
  • 877

姿态解算系列一:经验型卡尔曼数据融合

目的:我们需要得到机器人运动的姿态信息,三个轴的角度以及角速度。 本文大纲: 1、传感器相关模型  2、坐标变换    3、卡尔曼数据融合 4、姿态解算流程  5、DMP  6、数据融合效果...
  • haishaoli
  • haishaoli
  • 2016-10-29 17:02:20
  • 7946

谈谈MPU6050的数据融合 一阶滤波 卡尔曼滤波

首先要明确,MPU6050 是一款姿态传感器,使用它就是为了得到待测物体(如四轴、平衡小车) x、y、z 轴的倾角(俯仰角 Pitch、滚转角 Roll、偏航角 Yaw) 。我们通过 I2C 读取到 ...
  • zsn15702422216
  • zsn15702422216
  • 2016-08-16 18:17:13
  • 17136

基于卡尔曼滤波算法融合图像速度数据和加速度计数据

最近在改进之前做的视觉定点算法,以前只有一个位置环,现在准备再串一级速度环,但是解算出无人机的平移速度还是颇为头疼的,网上的资料很少,需要我们自己动脑去解决这个问题。 首先要测水平速度,传统的方法是...
  • gyh_420
  • gyh_420
  • 2017-08-06 12:29:29
  • 1435

基于卡尔曼滤波的数据融合

  • 2012年06月29日 11:11
  • 497KB
  • 下载

多传感器分布式Kalman 滤波融合算法

  • 2008年03月09日 21:55
  • 227KB
  • 下载

无损卡尔曼滤波UKF与多传感器融合

非线性系统状态估计是一大难点。KF(Kalman Filter)只适用于线性系统。EKF(Extended Kalman Filter)利用泰勒展开将非线性系统线性化。可是,EKF在强非线性系统下的误...
  • Young_Gy
  • Young_Gy
  • 2017-11-16 17:01:22
  • 968

复习EKF

复习EKF扩展卡尔曼滤波是在卡尔曼滤波的基础上进行泰勒展开实现的 卡尔曼滤波的五个基础方程:  系统状态方程(由上一状态滤波值预测当前状态估计值): X(k|k−1)=AX(k−1|k−1)+B...
  • enhaibulei
  • enhaibulei
  • 2017-07-27 13:29:13
  • 565
收藏助手
不良信息举报
您举报文章:扩展卡尔曼滤波EKF与多传感器融合
举报原因:
原因补充:

(最多只允许输入30个字)