基本的感知任务有针对动态道路参与者的目标识别、检测和跟踪,之前的文章基本把无人驾驶感知篇之目标检测写的差不多了,这篇开始写一写目标的跟踪。
1.什么是目标跟踪
目标跟踪是目标检测在时间轴上的延续,获得连续时间序列一系列的目标检测结果后,可关联不同时刻下的检测结果是否属于同一目标,并推算目标运动速度、加速度等不可直接观测的微分运动信息,甚至于预测目标未来时刻的运动状态。
2.目标跟踪算法
目标跟踪算法通常包含数据关联、运动模型和滤波三个关键。目标跟踪需要接收目标检测结果作为观测值进行估计,目标跟踪输出结果称为估计值。数据关联旨在将不同时刻的观测值在时间维度 上关联起来,数学上可定义为匹配问题,即通过目标位置或者外形的相似度量 计算分值,找到时序上最优的匹配结果。目标跟踪算法主要由以下:
早期跟踪算法:
(1)Meanshift跟踪算法
(2)Camshift跟踪算法
(3)Kalman滤波跟踪算法
(4)粒子滤波跟踪算法
相关滤波算法:
(1)MOSSE跟踪算法
(2)CSK跟踪算法
(3)CN跟踪算法
(4)KCF跟踪算法
(5)SAMF跟踪算法
(5)SRDCF跟踪算法
(6)深度学习跟踪算法:
(1)对相关滤波算法改进:C-COT、ECO。
(2)利用辅助图片数据预训练深度模型,在线跟踪时微调:DLT、SO-DLT。
(3)利用现有大规模分类数据集预训练的CNN分类网络提取特征:FCNT。
(4)利用跟踪序列预训练,在线跟踪时微调:MDNet
(5)运用递归神经网络进行目标跟踪的新思路:RTT、DeepTracking