第6.7节 反常积分


6.7 IMPROPER  INTEGRALS

 

Whatis the area of the region under the curve y=1/______fromx=0 to x=1(Figure 6.7.1(a)) ? The function 1/_____isnot continuous at x=0, and in fact 1/_____isinfinite for infinitesimal ε>0.Thus our notion of a definite integral does not apply. Neverthelesswe shall be able to assign an area to the region using improperintegrals. We see from the figure that the region extends infinitelyfar up in the vertical direction. However, it becomes so thin thatthe area of the region turns out to be finite.

 

Theregion of Figure 6.7.1(b)under the curve y=x -3fromx=1to x=

 

 

 

 

 

 

 

 

 

 

 

Figure6.7.1

 

extendsinfinitely far in the horizontal direction. We shall see that thisregion, too, has a finite area which is given by an improperintegral.

 

Improperintegrals are defined as follows.

 

DEFINITION

       Suppose fis continuous on the half - open interval [a, b]. The improperintegral of f from a to b is defined by the limit

 

 

 

Ifthe limit exists the improper integral is said to converge. Otherwisethe improper integral is said to diverge.

 

Theimproper integral can also be described in terms of definiteintegrals with hyperreal endpoints. We first recall that the definiteintegral

 

 

 

isa real function of two variables uandv.If u andv varyover the hyperreal numbers instead of the real numbers, the definiteintegral ____f(x)dx standsfor the natural extension of Devaluatedat (u,v),

                      

 

 

 

Hereis description of the improper integral using definite integrals withhyperreal endpoints.

 

Letf becontinuous on (a, b].

(1)___ f(x)dx=S ifand only if __ f(x) dx S for all positive infinite ε.

(2)______f(x) dx = (or -) if andonly if ___ f(x) d(x) is positive infinite (or negative infinite) forall

   positive infiniteε.

 

EXAMPLE1  Find ________.Foru >0,

 

                          

 

 

             Then 

 

            Therefore theregion under the curve y=1/____from 0 to 1 shown in Figure 6.7.1(a) has area 2,

            and theimproper integral converges.

 

EXAMPLE2  Find________dx.For u >0,

                

 

 

Thistime

 

 

 

Theimproper integral diverges. Since the limit goes to infinity we maywrite

                        ______x-2dx =

Theregion under the curve in Figure 6.7.2 is said to have infinitearea.

 

Warning:we remind the reader once again that the symbols and-arenot real or even hyperreal numbers. We use them only to indicate thebehavior of a limit, or to indicate an interval without an upper orlower endpoint.

 

 

 

 

 

 

 

 

6.7.2

EXAMPLE3  Find the length of the curve y=x2/3,0 x 8.From Figure 6.7.3 the curve must have finite length. However, thederivative

                             ____________________

 

isundefined at x=0.Thus the length formula gives an improper integral,

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure6.7.3

 

Letu=9x2/3+4, du = 6x-1/3dx.The indefinite integral is

 

 

Therefore

 

 

 

Noticethat we use the same symbol for both the definite and the improperintegral. The theorem below justifies this practice.

 

THEOREM1

Iff is continuous on the closed interval [a,b] then the improperintegral of f from a to b converges an equals the definite integralof f from a to b.

 

PROOFWe have shown in Section 4.2 on the Fundamental Theorem that thefunction

                     F(u)= ____ f(x)dx

        iscontinuous on [a, b].Therefore

 

 

 

         where ___f(x)dxdenotesthe definite integral.

Wenow define a second kind of improper integral where the interval isinfinite.

 

DEFINITION

       Letf be continuous on the half-open interval[a,∝). The improperintegral of f from a to ∝ is defined by the limit

 

 

 

       The improperintegral is said to converge if the limit exists and to divergeotherwise.

 

Hereis description of this kind of improper integral using definiteintegrals with hyperreal endpoints.

 

         Let fbe continuous on [a,∝).

 

  (1) ___f(x)dx =S ifand only if ___f(x) dx Sfor all positive infinite H. 

  (2) ___f(x)dx =(or-)if and only if___f(x) dx is positive infinite (ornegative infinite ) for all positive

     infinite H.  

 

EXAMPLE4  Findthe area under the curve y= x-3from1 to .The area is given by the improper integral

 

 

For

 

Thus

 

 

 

Sothe improper integral converges and the region has area___.The region is shown in Figure 6.7.1(b)and extends infinitely far to the right.

 

EXAMPLE5  Findthe area under the curve y=x-2/3,1x≤∝.

 

 

 

Theregion is shown in Figure 6.7.4 and has infinite area.

 

 

 

 

Figure6.7.4

EXAMPLE6

       The regionin Example 5 is rotated about the x-axis.Find the volume of the solid of revolution.

       

       We usethe disc method because the rotation is about the axis of theindependent variable. The volume

       formula givesus an improper integral.

 

 

 

       So thesolid shown in Figure 6.7.5 has finite volume V=3π.

 

 

 

 

 

 

 

 

 

Figure6.7.5

 

Thelast two examples give an unexpected result. A region with infinitearea is rotated about the x-axisand generates a solid with finite volume! In terms of hyperrealnumbers, the area of the region under the curve y=x-2/3from1 to an infinite hyperreal number Hisequal to 3( H1/3-1),which is positive infinite. But the volume of the solid of revolutionfrom 1 to Hisequal to

                   3π(1- H-1/3),

Whichis finite and has standard part 3π.

 

Wecan give a simpler example of this phenomenon. Let Hbea positive infinite hyperinteger, and form a cylinder of radius 1/Handlength H²(Figure6.7.6). Then the cylinder is formed by rotating a rectangle of lengthH², width 1/H,and infinite area H²/H=H.But the volume of the cylinder is equal to π,

 

            V=π r²h = π(1/H)²(H=π.

 

Imaginea cylinder made out of modelling clay, with initial length and radiusone. The volume is π. The clay is carefully stretched so that thecylinder gets longer and thinner. The volume stays the same, but thearea of the cross section keeps getting bigger. When the lengthbecomes infinite, the cylinder of clay still has finite volume V=π,but the area of the cross section has become infinite.

 

Thereare other types of improper integrals. If f is continuous onthe half - open interval [a,b] then we define

                      _______f(x)dx =________f(x)dx.

 

Iff is continuous on (-∝,b] we define

                        _______f(x)dx =________f(x)dx.

 

Wehave introduced four types of improper integrals corresponding to thefour types of half - open intervals

[a,b),    [a,∞),   (a,b],   ( - ,b].

 

Bypiecing together improper integrals of these four types we can assignan improper integral to most functions which arise in calculus.

 

DEFINITION

      Afunction f is said to be piecewise continuous onan interval I if f is defined and continuous at all but perhapsfinitely many points of I. In particular, every continuous functionis piecewise continuous.

 

Wecan introduce the improper integral ____f(x)dx whenever f is piecewise continuous on I anda,b are either the endpoints of I or the appropriateinfinity symbol. A few examples will show how this can be done.

 

Letf be continuous at every point of the closed interval[a,b]except at one point c where a<c<b. We define

          

                  _______f(x)dx= _____f(x)dx+ ____ f(x)dx.

 

EXAMPLE7

        Find theimproper integral ____ x -1/3 dx.x -1/3 is discontinuous at x=0. The indefinite integral is

          ∫ x-1/3dx = ___ x2/3+ C.

Then

 

 

Similarly,

 

 

So

 

 

andthe improper integral converges. Thus, the region shown inFigure6.7.7 has finite area.

 

 

 

 

 

 

 

 

Figure6.7.7

 

Iff is continuous on the open interval (a, b), theimproper integral is defined as the sum

 

 

 

wherec is any point in the interval (a,b). The endpoints aand b may be finite or infinite. It does not matter whichpoint c is chosen, because if e is any other point in(a,b), then

 

 

 

EXAMPLE 8 Find

 

 

 

Thefunction 2/______ +1/____is continuous on the open interval (0, 2)but discontinuous at bothendpoints (Figure 6.7.8). Thus

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure6.7.8

Firstwe find the indefinite integral.

 

 

 

Then

 

 

Also

 

 

Therefore

 

 

 

EXAMPLE9  Find

 

 

 

Thefunction 1/x² + 1/(x-1)² is continuous on the openinterval (0,1) but discontinuous at both endpoints. The indefiniteintegral is

 

 

Wehave

 

 

 

Similarlywe find that

 

 

 

Inthis situation we may write

 

 

 

andwe say that the region under the curve in Figure 6.7.9 has infinitearea.

 

 

 

 

 

 

 

 

 

 

 

Figure6.7.9

RemarkIn Example 9

Weare faced with a sum of two infinite limits. Using the rules foradding infinite hyperreal

numbersas a guide we can give rules for sums of infinite limits.

 

    IfH and K are positive infinite hyperreal numbers and cis finite, then

                          H+ K is positive infinite,

                          H+ c is positive infinite,

                          -H- K is negative infinite,

                          -H+ c is negative infinite,

H-Kcan be either finite, positive infinite, or negative infinite.

Byanalogy, we use the following rules for sums of two infinite limitsor of a finite and an infinite limit. These rules tell us when such asum can be considered to be positive or negative infinite. We use theinfinity symbols as a convenient shorthand, keeping in mind that theyare not even hyperreal numbers.

                        

                        

 

 

 

 

 

 

 

EXAMPLE10 Find _____ xdx. We see that 

 

         

 

 

           and                 ______ xdx = ∞.

           Thus ____xdx diverges and has the form ∞-∞. We do not assign it anyvalue or either of the symbols ∞ or -∞. The region under thecurve f(x)=x is shown in Figure 6.7.10.

 

 

 

 

 

 

 

 

 

 

 

Figure6.7.10

 

Itis tempting to argue that the positive area to the right of theorigin and the negative area to the left exactly cancel each otherout so that the improper integral is zero. But this leads to aparadox.

 

Wrong:_____ xdx =0. Let v= x+2,dv= dx. Then

 

 

 

 

 

 

Subtracting          

 

But                      ______ 2dx=∞

Sowe do not give the integral_____ xdx the value 0, and insteadleave it undefined.

 

PROBLEMS FOR  SECTION 6.7

InProblems 1-36, test the improper integral for convergence andevaluate when possible.

 

1_________x-2dx               2________x-0.9dx

3________x -1/2dx                4______(2x-1)-3dx
5______(2x-1)-3dx                6_______x -1/3dx     

7______x2+2x-1dx               8_________x-2- x -3dx

9__________x(1+x2)-2dx          10_______x -1/2+x-2dx

11________x-1/2+x-2dx ??         12_________x-2dx

13_______(x-1)-2/3dx             14________x-2dx

15_____x-2/3dx                  16______dx

17____2x(x2-1)-1/3 dx             18____2x3dx 

19_____(2x-1)-2/3dx               20_____(3x-1)-5dx 

21______x²dx                   22______(2x-1)3 dx

23_________dx                  24_______x-1/3dx

25________ x3dx               26_______x-3/2dx

27________dx                   28______ |x| (x+ 1)-3dx

29_________dx                  30_______(x-1)-2 + (x-3)-2dx

31____(x-1)-1/2+ (3-x) -1/2 dx       32______dx

33__________                  34____________

35_________f(x)dx  where f(x)= ______  

 

36 _________f(x)dx   where f(x)= ______ 

37 Show that if r is a rational number, the improper integral____ x-r dx converges whenr <1

    and divergeswhen r >1.

38 Show that if r is a rational, the improper integral ____x-r dx converges when r >1

    and divergeswhen r <1.

39 Find the area of the region under the curve y=4x-2from x=1 to x=∝.

40 Find the area of the region under the curve y=1/_______from x=_____ to x=1.

41 Find the area of the region between the curves y=x-1/4and y=x-1/2from x=0 to x=1.

42 Find the area of the region between the curves y=-x-3and y=x -2,1 ≤ x<∝.

43 Find the volume of the solid generated by rotating the curve y=1/x,1 ≤ x<∝,

   about (a)the x-axis,(b)the y-axis.

44  Find the volume of the solid generated by rotating the curve y=x-1/3,0 ≤ x<1,

     about (a)the x-axis, (b) the y-axis.

45  Find the volume of the solid generated by rotating the curve y=x-3/2,0 ≤ x<4,

     about (a)the x-axis, (b) the y-axis.

46  Find the volume generated by rotating the curve y=4x-3,-∝ ≤ x< -2, about (a) the x-axis,

     (b) they-axis.

47  Find the length of the curve y=_____from x=0 to x=1.

48  Find the length of the curve y=_____from x=0 to x=1.

49  Find the surface area generated when the curve y=___________,0 ≤x ≤1, is rotated about

     (a) thex-axis, (b) the y-axis.

50  Do the same for the curve y=______, 0 ≤ x ≤1

51  (a) Find the surface area generated by rotating the curve y=____ , 0 ≤x ≤1, about thex-axis.

     (b)Set upan integral for the area generated about the y-axis.

52  Find the surface area generated by rotating the curve y=x2/3,0 ≤x ≤ 8, about the x-axis.

53  Find the surface area generated by rotating the curve y=_______,0 ≤x a, about (a) the

     x-axis,(b) the y-axis (0< ar).

54  The force of gravity between particles of mass m1 and m2is F= gm1 m2 / where s is the

     distance betweenthem. If m1 is held fixed at the origin, find the work done inmoving m2

     from thepoint (1,0) all the way out the x-axis.

55  Show that the Rectangle and Addition Properties hold for improperintegrals.

 

EXTRA PROBLEMS  FOR  CHAPTER 6

 

1 The skin is peeled off a spherical apple in four pieces in such a waythat each horizontal cross section is a

   square whosecorners are on the original surface of the apple. If the originalapple had radius r, find the

   volume ofthe peeled apple.

2 Find the volume of a tetrahedron of height h and base a righttriangle with legs of length a and b.

 

3 Find the volume of the wedge formed by cutting a right circularcylinder of radius r with two planes, meeting

   on aline crossing the axis, one plane perpendicular to the axis and theother at a 45°angle.

 

4 Find the volume of a solid whose base is the region between thex-axis and the curve y=1-x²,and which

   intersects eachplane perpendicular to the x-axis in a square.

 

InProblems 5-8, the region bounded by the given curves is rotated about(a) the x-axis, (b) the y-axis. Find thevolumes of the two solids of revolution.

 

5   y=0,  y=________, 0x1

6   y=0,  y=x3/2,     0x1

7   y= x,   y= 4-x,     0x2

8   y=xp,  y=xq,        0x1,   where 0< q < p

9 The region under the curve y=______,0x1,where 0< p, isrotated about the x-axis.Find the volume of

   the solidof revolution.

10The region under the curve y=(x²+4)1/3, 0x2,is rotated about the y-axis.Find the volume of the solid of

  Revolution.

11Find the length of the curve  y=(2x +1)3/2,0x2.

12Find the length of the curve  y=3x -2,0x4.

13Find the length of the curve  x=3t+1,y=2-4t,0t1.

14Find the length of the curve  x=f(t),y=f(t)+c,atb.

15Findthe length of the line    x=At+B,y=Ct + D,atb.

16Find the area of the surface generated by rotating the curve y=3x²-2,0x1,about the y-axis.

17Find the area of the surface generated by rotating the curvex=At²+Bt,y=2At +B,0t 1,about the x-axis.

   A>0, B>0.

18Find the average value of f(x)=x/_______ , 0x4.

19Findthe average value of f(x)=xp, 1xb. p-1.

20Find the average distance from the origin of a point on the parabolay=x², 0x 4.

   Withrespect to x.

21Given that f(x) = xp,0x 1,p apositive constant, find a point cbetween0 and 1 such that f(c)equalsthe average value of f(x)

22Find the center of mass of a wire on the x-axis,0x 2,whose density at a point xisequal to the square of the distance from (x,0)to (0,1).

23Find the center of mass of a length of wire with constant densitybent into three line segments covering the top, left, and right edgesof the square with vertices (0,0), (0,1), (1,1), (1,0).

24Find the center of mass of a plane object bounded by the linesy=0,y=x,x=1,with density p(x)=1/x.

25Findthe center of mass of a plane object bounded by the curves x=y²,x=1,with density p(x)=y².

26Find the centroid of the triangle bounded by the x-andy-axesand the line ax+by = c,where a, b,and c are

  positive constants.

27A spring exerts a force of 10x1bswhen stretched a distance x beyondits natural length of 2ft. Find the work required to stretch thespring from a length of 3 ft to 4ft.

 

InProblems 28-36, test the improper integral for convergence andevaluate if it converges.

 

28    _________x-3dx                       29____(x+2)-1/4 dx

30    ____x -4dx                           31____x -1/5dx

32    ____x 1/5dx                           33__________dx

34    ________dx                          35________dx

36    _____sinx dx

37     Awire has the shape of a curve y=f(x),a x b,and has density p(x)atvalue x

       Justify theformulas below for the mass and moments of the wire.

 

                     

 

38 Find the mass, moments, and center of mass of a wire bent in theshape of a parabola

 

       y=x², -1x1,with density p(x)=________.

 

39 Find the mass, moments, and center of mass of a wire of constantdensity pbentin the

shapeof the semicircle y=________,  -1x1.

40An object fills the solid generated by rotating the region under thecurve y=f(x),axb,about the x-axis.

Itsdensity per unit volume is p(x).Justify the following formula for the mass of the object.

 

                     m=_____ p(x) π (f(x))²dx.

41A container filled with water has the shape of a solid of revolutionformed by rotating the curve x=g(y),

    ayb,about the (vertical) y-axis.Waterhas constant density pperunit volume.

    Justify theformula below for the amount of work needed to pump all the water tothe top of the container.

                                W=______pπ (g(y))² (b-y) dy.

 

  42 Findthe work needed to pump all the water to the top of a water-filledcontainer in the shape of a cylinder

    with heighth andcircular base of radius r.

  43Do Problem 46 if the container is in the shape of a hemisphericalbowl of radius r.

  44Do Problem 46 if the container is in the shape of a cone with itsvertex at the bottom,

    height h,and circular top of radius r.

  □45 Thepressure,or force per unit area, exerted by water on the walls of a containeris equal to

 p=p(b-y)wherep isthe density of water and b-ythewater depth. Find the total force on a dam in the

 shape ofa vertical rectangle of height bandwidth w,assumingthe water comes to the top of the dam.

 □46 Awater-filled container has the shape of a solid formed by rotatingthe curve x=g(y), aybabout

     the (vertical)y-axis.Justify the formula below for the total force on the walls of thecontainer.

 

 

 

 

 

 

 

 

 

 

 

 

 

 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值