基于XGBoost模型的A银行客户金融产品推荐系统毕业论文【附数据】

📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建

✨ 专业领域:

金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用


💡 擅长工具:

Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导


📚 内容:

金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
 

具体问题可以私信或查看文章底部二维码

✅ 感恩科研路上每一位志同道合的伙伴!

(1)客户数据的收集与分析 本研究首先利用A银行的客户信息、产品信息、交易信息和APP行为数据等丰富的数据资源,对客户进行全面分析。通过对客户的交易和持仓情况进行深入研究,采用聚类分析方法对全量客户进行分群。不同的客户群体具有不同的需求和偏好,因此,针对每个客群设计相应的召回和排序策略显得尤为重要。通过对客户数据的分析,能够识别出客户的特征和行为模式,为后续的推荐模型提供基础。

(2)混合召回策略的设计 在推荐系统中,召回策略是确保推荐结果相关性的关键环节。本文设计了一种混合召回策略,融合了热门召回、协同过滤、相似度计算和用户行为等多种方式。这种策略与金融产品交易的实际场景紧密结合,从多个维度召回与客户偏好相匹配的产品。热门召回利用了当前市场上最受欢迎的金融产品

### 使用XGBoost模型实现房价数据的可视化分析 #### 数据准备与加载 为了进行有效的可视化分析,首先需要准备好用于训练和测试的数据集。以Boston房价数据集为例,在Python环境中可以通过`sklearn.datasets`模块轻松获取该数据集[^1]。 ```python from sklearn import datasets import pandas as pd # 加载波士顿房价数据集 boston = datasets.load_boston() df = pd.DataFrame(boston.data, columns=boston.feature_names) df['PRICE'] = boston.target ``` #### 构建并训练XGBoost模型 完成数据预处理之后,下一步就是构建XGBoost回归模型,并对其进行训练。这里采用默认参数快速搭建一个基础版本的XGBoost模型[^3]。 ```python import xgboost as xgb from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error # 划分特征变量与目标变量 X = df.drop('PRICE', axis=1) y = df['PRICE'] # 将数据划分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=123) # 创建DMatrix对象供XGBoost使用 dtrain = xgb.DMatrix(X_train, label=y_train) dtest = xgb.DMatrix(X_test, label=y_test) # 设置初始参数 params = { 'objective': 'reg:squarederror', } # 训练模型 model = xgb.train(params=params, dtrain=dtrain, num_boost_round=100) ``` #### 可视化实际值对比预测值 通过绘制图表比较真实价格与预测价格之间的差异,能够直观地评估模型性能。此部分展示了如何创建散点图来展示两者的关系[^2]。 ```python import matplotlib.pyplot as plt import seaborn as sns # 获取预测结果 predictions = model.predict(dtest) # 绘制实际值 vs 预测值图形 plt.figure(figsize=(8, 6)) sns.scatterplot(x=y_test, y=predictions) line = range(int(min(y_test)), int(max(y_test)) + 1) plt.plot(line, line, color='red') # 对角线表示完美拟合情况 plt.xlabel('Actual Prices') plt.ylabel('Predicted Prices') plt.title('Actual Price VS Predicted Price') plt.show() ``` #### SHAP值解释模型决策逻辑 除了基本的结果可视化外,还可以借助SHAP库进一步探索各个输入特征对于最终输出的影响程度。这有助于理解哪些因素最影响房屋定价以及它们是如何共同作用于模型预测中的。 ```python import shap explainer = shap.TreeExplainer(model) shap_values = explainer.shap_values(X_test) # 总览各特征的重要性 shap.summary_plot(shap_values, X_test, feature_names=X.columns.tolist(), plot_type="bar") # 局部依赖关系绘图 for name in ['RM', 'LSTAT']: # 这里选择了两个重要特征作为例子 shap.dependence_plot(name, shap_values, X_test, interaction_index=None, feature_names=X.columns.tolist()) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值