📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建
✨ 专业领域:
金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用
💡 擅长工具:
Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导
📚 内容:
金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
✅ 具体问题可以私信或查看文章底部二维码
✅ 感恩科研路上每一位志同道合的伙伴!
(1)客户数据的收集与分析 本研究首先利用A银行的客户信息、产品信息、交易信息和APP行为数据等丰富的数据资源,对客户进行全面分析。通过对客户的交易和持仓情况进行深入研究,采用聚类分析方法对全量客户进行分群。不同的客户群体具有不同的需求和偏好,因此,针对每个客群设计相应的召回和排序策略显得尤为重要。通过对客户数据的分析,能够识别出客户的特征和行为模式,为后续的推荐模型提供基础。
(2)混合召回策略的设计 在推荐系统中,召回策略是确保推荐结果相关性的关键环节。本文设计了一种混合召回策略,融合了热门召回、协同过滤、相似度计算和用户行为等多种方式。这种策略与金融产品交易的实际场景紧密结合,从多个维度召回与客户偏好相匹配的产品。热门召回利用了当前市场上最受欢迎的金融产品