✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1)特征工程在超短期电力负荷预测中的应用
在超短期电力负荷预测中,特征工程扮演着至关重要的角色。特征工程主要包括数据的预处理、特征选择以及特征降维等步骤,这些步骤能够显著提升预测模型的精度和效率。
首先,数据的预处理是特征工程的基础。对于采集到的原始特征数据,如历史负荷数据、气象数据、经济发展指标等,需要进行缺失值填充、异常值处理以及数据清洗等操作。缺失值填充可以采用均值填充、中位数填充或插值法等方法,以确保数据的完整性。异常值处理则需要根据数据的分布情况,识别并剔除或修正那些明显偏离正常范围的数值。数据清洗则包括去除重复数据、格式转换以及数据标准化等步骤,以确保数据的一致性和准确性。
其次,特征选择是特征工程的核心环节。在超短期电力负荷预测中,特征的数量往往非常庞大,但并非所有特征都对负荷预测有显著影响。因此,需要通过特征选择方法,筛选出对负荷预测具有显著影响的特征。本文采用MDS算法和XGBoost算法相结合的方法进行特征选择。MDS算法能够降低特征数据的维度,同时保留特征之间的相对关系。而XGBoost算法则是一种高效的梯度提升算法,能够评估每个特征对模型预测精度的影响。通过结合这两种算法,可以筛选出对负荷预测具有显著影响的低维特征数据集。
最后,特征降维是特征工程的另一个重要环节。特征降维能够进一步减少特征的数量,降低模型的复杂度,提高预测效率。本文采用XGBoost算法进行特征降维,通过构建多个弱学习器逐层训练,以筛选出对负荷预测具有显著影响的特征。同时,通过分析各特征数据之间及其与负荷数据间的相关性,可以进一步确定哪些特征对负荷预测具有重要影响,从而建立以提高负荷预测精度和效率为目的的数据处理层模型。
(2)基于XGBoost算法的超短期电力负荷预测模型
在特征工程的基础上,本文提出了基于XGBoost算法的超短期电力负荷预测模型。XGBoost算法是一种高效的梯度提升算法,具有处理大规模数据、支持多种损失函数以及自动处理缺失值等优点。因此,在超短期电力负荷预测中,XGBoost算法能够取得较好的预测效果。
首先,构建双层XGBoost预测模型。第一层为数据处理层,用于筛选和降维特征数据集;第二层为预测层,用于构建负荷预测模型。通过构建多个弱学习器逐层训练,以数据处理层筛选出的特征集和负荷为输入,采用麻雀优化算法(SSA)优化XGBoost预测模型的相关超参数,如学习率、最大深度、最小子节点权重和等。通过优化这些超参数,可以得到精度最高、均方根误差最小的负荷预测模型。
其次,在构建预测模型时,需要考虑不同时间段数据集对预测结果的影响。由于电力负荷在不同时间段内具有不同的变化规律,因此需要根据实际情况选择合适的时间段数据集进行训练。同时,还需要考虑不同天气条件对负荷预测的影响。例如,在晴天工作日、节假日以及阴雨天等不同情况下,负荷的变化规律会有所不同。因此,在构建预测模型时,需要充分考虑这些因素的影响,以提高模型的预测精度和泛化能力。
最后,在实际应用中,还需要对预测模型进行验证和评估。通过对比实际负荷数据和预测负荷数据,可以计算得到模型的预测误差和评价指标。常用的评价指标包括均值绝对偏差百分比(MAPE)、均方根误差(RMSE)以及均值绝对偏差(MAE)等。通过计算这些评价指标,可以评估模型的预测精度和效果,并根据实际情况对模型进行调整和优化。
(3)多模型融合在超短期电力负荷预测中的应用
为了提高超短期电力负荷预测的精度和稳定性,本文还研究了多模型融合的方法。多模型融合能够充分利用不同预测方法的优点,提高预测结果的准确性和可靠性。
首先,在Stacking架构下融合多模型。Stacking是一种集成学习方法,通过将多个基学习器的预测结果进行组合,得到最终的预测结果。在本文中,将XGBoost算法与多种机器学习及深度学习方法进行融合,包括支持向量机算法(SVM)、随机森林算法(RF)、卷积神经网络(CNN)以及循环门单元(GRU)等。这些算法在数据处理和特征提取方面各有优势,通过融合这些算法,可以充分利用它们的优点,提高预测精度。
其次,在选择元学习器时,需要考虑不同算法的性能和稳定性。在本文中,通过对比不同算法在验证集上的表现,选择XGBoost作为元学习器建立第二层预测模型。XGBoost算法具有处理大规模数据、支持多种损失函数以及自动处理缺失值等优点,在超短期电力负荷预测中表现出色。因此,将其作为元学习器可以进一步提高预测模型的精度和稳定性。
% 加载数据
load('load_data.mat'); % 假设load_data.mat中包含了历史负荷数据和特征数据
% 数据预处理
data = fillmissing(data, 'linear'); % 填充缺失值
data = rmoutliers(data); % 去除异常值
data = zscore(data); % 数据标准化
% 特征选择
[MDS_data, ~] = mds(data(:, 1:end-1)); % MDS降维
feature_importance = xgboostFeatureImportance(data(:, 1:end-1), data(:, end)); % 计算特征重要性
selected_features = find(feature_importance > threshold); % 筛选重要特征
% 构建XGBoost预测模型
params = struct('max_depth', 6, 'eta', 0.1, 'objective', 'reg:squarederror'); % 设置XGBoost参数
model = xgboostTrain(data(selected_features, :), data(:, end), params); % 训练模型
% 优化超参数(使用麻雀优化算法SSA)
best_params = ssaOptimizeXGBoost(data(selected_features, :), data(:, end), params); % SSA优化
model_optimized = xgboostTrain(data(selected_features, :), data(:, end), best_params); % 训练优化后的模型
% 预测与评估
predictions = xgboostPredict(model_optimized, data_test(selected_features, :)); % 预测
errors = predictions - data_test(:, end); % 计算误差
rmse = sqrt(mean(errors.^2)); % 计算均方根误差
mape = mean(abs(errors) ./ data_test(:, end)) * 100; % 计算均值绝对偏差百分比
mae = mean(abs(errors)); % 计算均值绝对偏差
% 打印评估结果
fprintf('RMSE: %.4f\n', rmse);
fprintf('MAPE: %.4f%%\n', mape);
fprintf('MAE: %.4f\n', mae);
% 多模型融合(示例)
base_models = {...
fitrensemble(data(selected_features, :), data(:, end), 'Method', 'Bag', 'NumLearningCycles', 100, 'Learners', 'tree'); % 随机森林
fitcsvm(data(selected_features, :), data(:, end), 'KernelFunction', 'rbf', 'Standardize', true); % SVM
% 可以继续添加其他模型,如CNN、GRU等(需要额外实现)
};
meta_model = fitrensemble(cell2mat(arrayfun(@(m) predict(m, data_test(selected_features, :)), base_models, 'UniformOutput', false)), data_test(:, end), 'Method', 'AdaBoostM1'); % Stacking融合
% 评估融合模型
predictions_fused = predict(meta_model, data_test(selected_features, :));
errors_fused = predictions_fused - data_test(:, end);
rmse_fused = sqrt(mean(errors_fused.^2));
mape_fused = mean(abs(errors_fused) ./ data_test(:, end)) * 100;
mae_fused = mean(abs(errors_fused));
% 打印融合模型评估结果
fprintf('Fused RMSE: %.4f\n', rmse_fused);
fprintf('Fused MAPE: %.4f%%\n', mape_fused);
fprintf('Fused MAE: %.4f\n', mae_fused);