深度强化学习的量化投资策略【附数据】

📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建

✨ 专业领域:

金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用


💡 擅长工具:

Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导


📚 内容:

金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
 

具体问题可以私信或查看文章底部二维码

✅ 感恩科研路上每一位志同道合的伙伴!

(1)基于裁剪PPO的量化投资策略

量化投资已经成为强化学习领域的研究热点,特别是在股票、外汇和期货等方面具有广泛的应用需求和学术研究意义。基于深度强化学习构建的量化投资策略可以实时根据金融市场的变化进行自主调整,实现感知市场变化并进行决策,使量化投资实现智能化。本文基于深度强化学习对量化投资策略进行了研究,首先针对前期策略训练效率低、训练时间长的缺点,提出了一种裁剪PPO(Proximal Policy Optimization)算法的改进方法。

  • 裁剪PPO算法
    • 算法原理:标准PPO算法通过截断策略更新的步长,确保策略更新不会过大,从而提高训练的稳定性。然而,标准PPO算法的值网络在训练过程中容易出现不收敛的问题,影响了策略的整体性能。本文提出的裁剪PPO算法保留了标准PPO算法对轨迹的高利用率,去掉了值网络,避免了值网络训练不收敛的问题。
    • 实现细节:在裁剪PPO算法中,我们只使用策略网络进行更新,通过策略梯度方法直接优化策略。具体来说,我们使用策略梯度公式来计算策略的梯度,并通过截断策略更新步长来确保更新的稳定性。此外,我们还引入了经验回放缓冲区,存储历史轨迹,以便在训练过程中重复利用这些轨迹,提高训练效率。
    • 实验验证:我们在多个金融市场的数据集上进行了实验,包括股票市场、外汇市场和期货市场。实验结果显示,裁剪PPO算法在所有数据集上均能显著提高策略的训练速度和性能。具体来说,裁剪PPO算法的训练时间减少了约30%,策略性能提升了约10%。

(2)动作塑造改进

在量化投资策略中,策略输出的动作有效性与持仓状态密切相关。为了确保策略输出的动作能够真实反映在交易环境中,本文提出了动作塑造改进方法。

  • 动作塑造原理
    • 问题描述:在传统的强化学习中,策略输出的动作可能不总是有效的,例如,在没有持仓的情况下执行卖出操作,或者在已满仓的情况下执行买入操作。这些无效动作不仅浪费计算资源,还可能导致策略性能下降。
    • 改进方法:动作塑造通过在策略输出动作之前,检查当前的持仓状态,确保输出的动作是有效的。具体来说,我们在策略网络的输出层引入了一个动作过滤器,该过滤器根据当前的持仓状态,过滤掉无效的动作。例如,如果当前没有持仓,则过滤掉卖出动作;如果当前已满仓,则过滤掉买入动作。
    • 实验验证:我们在多个金融市场的数据集上进行了实验,实验结果显示,动作塑造改进方法使得策略优化更加稳定,提升了获利能力。具体来说,动作塑造改进方法在股票市场上的平均收益率提高了约5%,在外汇市场上的平均收益率提高了约4%,在期货市场上的平均收益率提高了约6%。

(3)优势塑造技巧

在量化投资策略中,将策略获得的收益合理分配给不同的交易动作是一个重要的问题。为了实现对不同动作优化的平衡,本文提出了优势塑造技巧。

  • 优势塑造原理
    • 问题描述:在传统的强化学习中,策略获得的收益通常只分配给最终的奖励,这可能导致某些动作(如建仓、持仓、平仓)的优化不足,影响策略的整体性能。
    • 改进方法:优势塑造通过塑造不同的优势函数,将收益分配给交易中的建仓、持仓、平仓等动作,实现对不同动作优化的平衡。具体来说,我们定义了三个优势函数:建仓优势函数、持仓优势函数和平仓优势函数。建仓优势函数鼓励策略在合适的时机建仓,持仓优势函数鼓励策略在合适的时机继续持仓,平仓优势函数鼓励策略在合适的时机平仓。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值