📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建
✨ 专业领域:
金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用
💡 擅长工具:
Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导
📚 内容:
金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
✅ 具体问题可以私信或查看文章底部二维码
✅ 感恩科研路上每一位志同道合的伙伴!
(1) 数据收集与预处理
在金融微博细粒度情感分析的研究中,数据收集是基础步骤。通过设计并实现爬虫系统,收集了2017年2月27日至2017年7月31日期间与大盘相关的微博信息共91万余条。这一步骤确保了研究对象的准确性和数据的时效性
。数据预处理阶段,对收集到的微博文本进行清洗,去除无效信息和噪声,为后续的情感分析打下基础。
(2) 情感分类与词典构建
将情感细分为好、恶、怒、惧和无情感五类,以适应金融领域情感分析的细粒度需求。提出了基于平均余弦相似性的领域情感词典自动构建算法,该算法有效解决了新增情感词余弦值较高但语义相反的问题,从而提高了领域情感词典的准确度
。这一步骤是情感分析算法的核心,因为它直接影响到情感分类的准确性。