情感分析与特征融合驱动的股票价格预测研究【附数据】

📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建

✨ 专业领域:

金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用


💡 擅长工具:

Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导


📚 内容:

金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
 

具体问题可以私信或查看文章底部二维码

✅ 感恩科研路上每一位志同道合的伙伴!

(1) 数据收集与预处理

在金融微博细粒度情感分析的研究中,数据收集是基础步骤。通过设计并实现爬虫系统,收集了2017年2月27日至2017年7月31日期间与大盘相关的微博信息共91万余条。这一步骤确保了研究对象的准确性和数据的时效性

。数据预处理阶段,对收集到的微博文本进行清洗,去除无效信息和噪声,为后续的情感分析打下基础。

(2) 情感分类与词典构建

将情感细分为好、恶、怒、惧和无情感五类,以适应金融领域情感分析的细粒度需求。提出了基于平均余弦相似性的领域情感词典自动构建算法,该算法有效解决了新增情感词余弦值较高但语义相反的问题,从而提高了领域情感词典的准确度

。这一步骤是情感分析算法的核心,因为它直接影响到情感分类的准确性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值