(概率论与数理统计)ch01

  1. 随机事件: 某些基本事件组成的一个集合.简称事件.

  2. 必然事件: 基本样本空间 Ω \Omega Ω的最大子集,也就是 Ω \Omega Ω.

  3. 不可能事件: Φ \varPhi Φ

  4. 事件的互不相容性( A 1 ∩ A 2 = Φ A_1\cap A_2=\varPhi A1A2=Φ) vs 对立事件\

    • 不相容,描述的是两个事件不会同时发生.\
    • 两个事件必发生一个.要么A,要么 A ‾ \overline{A} A

    \centering
    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BL4szcZM-1585115408127)(./ch01/1.png)]{width=“0.3\linewidth”}

  5. 概率的公里化定义:在一个随机现象中,用来表示一个随机事件A发生可能性大小的实数称为事件的概率.记为 P ( A ) P(A) P(A).并规定

    • 非负性定理: P ( A ) ⩾ 0 P(A)\geqslant 0 P(A)0

    • 正则性公理: P ( Ω ) = 1 P(\Omega)=1 P(Ω)=1

    • 可加性公理:如果, A 1 , A 2 A_1,A_2 A1,A2互不相容, P ( A 1 ∪ A 2 ) = P ( A 1 ) + P ( A 2 ) P(A_1\cup A_2)=P(A_1)+P(A_2) P(A1A2)=P(A1)+P(A2)

  6. 确定概率的几个方法

    • 古典方法. P ( A ) = k n = ∣ A ∣ ∣ Ω ∣ P(A)=\frac{k}{n}=\frac{|A|}{|\Omega|} P(A)=nk=ΩA

    • 频率方法 P N ( A ) = K N N P_N(A)=\frac{K_N}{N} PN(A)=NKN
      也就是N次试验A发生的次数 K N K_N KN.这是由大量试验近似的结果.不同于古典方法.古典方法是精确的穷举.在统计学中,把频率成为概率的估计值.

    • 主观方法(贝叶斯学派):一个时间的概率是人们根据经验对该事件发生可能性所给出的个人信念.也被成为主观概率.

  7. 独立性: P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)

  8. 若时间A,B独立,那么 A , B ‾ A,\overline{B} A,B独立, A ‾ , B \overline{A},B A,B独立, A ‾ , B ‾ \overline{A},\overline{B} A,B独立.

  9. 如果试验之间相互独立,他们进行n次.我们便称呼它为n重独立重复试验.比如n重伯努利试验.对于伯努利试验.比如抛硬币5次.出现几个正面,几个反面是一种事件.但是第一个出现正面,第二次反面,后面全部正面这是一个事件.他们是不一样的.
    P ( A A ‾ A A A ) = P ( A A A ‾ A A ) = p 4 ( 1 − p ) P(A\overline{A}AAA)=P(AA\overline{A}AA)=p^4(1-p) P(AAAAA)=P(AAAAA)=p4(1p)
    但是出现1个反正面,四个正面的概率却不是上面的概率.是另外的事件W.需要另外计算.
    P ( W ) = C 5 4 p 4 ( 1 − p ) P(W)=C_5^4p^4(1-p) P(W)=C54p4(1p)

  10. 条件概率 P ( A ∣ B ) = P ( A B ) P ( A ) P(A|B)=\frac{P(AB)}{P(A)} P(AB)=P(A)P(AB)

  11. 条件概率的性质

    • 非负性: P ( A ∣ B ) ⩾ 0 P(A|B)\geqslant 0 P(AB)0

    • 正则性: P ( Ω ∣ B ) = 1 P(\Omega|B)=1 P(ΩB)=1

    • 可加性:加如事件 A 1 , A 2 A_1,A_2 A1,A2互斥.且 P ( B ) > 0 P(B)>0 P(B)>0.则
      P ( A 1 ∪ A 2 ∣ B ) = P ( A 1 ∣ B ) + P ( A 2 ∣ B ) P(A_1\cup A_2|B)=P(A_1|B)+P(A_2|B) P(A1A2B)=P(A1B)+P(A2B)

  12. 乘法公式 P ( A B ) = P ( A ∣ B ) P ( B ) = P ( B ∣ A ) P ( A ) P(AB)=P(A|B)P(B)=P(B|A)P(A) P(AB)=P(AB)P(B)=P(BA)P(A)

  13. 如果事件独立 P ( A ∣ B ) = P ( A ) P(A|B)=P(A) P(AB)=P(A)

  14. 乘法的一般形式
    P ( A 1 A 2 ⋯ A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) ⋯ P ( A n ∣ A 1 A 2 ⋯ A n − 1 ) P(A_1A_2\cdots A_n)=P(A_1)P(A_2|A_1)P(A_3|A_1A_2)\cdots P(A_n|A_1A_2\cdots A_{n-1}) P(A1A2An)=P(A1)P(A2A1)P(A3A1A2)P(AnA1A2An1)

  15. 全概率公式 P ( A ) = P ( A ∣ B ) P ( B ) + P ( A ∣ B ‾ ) P ( B ‾ ) P(A)=P(A|B)P(B)+P(A|\overline{B})P(\overline{B}) P(A)=P(AB)P(B)+P(AB)P(B)
    或者一般形式
    P ( A ) = P ( A ∣ B 1 ) P ( B 1 ) + P ( A ∣ B 2 ) P ( B 2 ) + ⋯ + P ( A ∣ B n ) P ( B n ) P(A)=P(A|B_1)P(B_1)+P(A|B_2)P(B_2)+\cdots+P(A|B_n)P(B_n) P(A)=P(AB1)P(B1)+P(AB2)P(B2)++P(ABn)P(Bn)
    其中, B i ∩ B j = Φ , i ≠ j B_i\cap B_j=\varPhi, i\ne j BiBj=Φ,i=j. B 1 ∪ B 2 ∪ ⋯ ∪ B n = Ω B_1\cup B_2\cup \cdots \cup B_n=\Omega B1B2Bn=Ω

  16. 贝叶斯公式
    P ( B k ∣ A ) = P ( A ∣ B k ) P ( B k ) ∑ i = 1 n P ( A ∣ B i ) P ( B i ) P(B_k|A)=\frac{P(A|B_k)P(B_k)}{\sum_{i=1}^{n}P(A|B_i)P(B_i)} P(BkA)=i=1nP(ABi)P(Bi)P(ABk)P(Bk)
    B i B_i Bi Ω \Omega Ω的一个划分.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值