积分证明题是考研中难度较大的板块,很多学弟学妹们希望我出一篇总结文章,故作本文,希望对大家有所帮助。 本文所涉及题目,均是来自市面上常见题册(李林880,张宇1000题,汤家凤1800等)
由于内容较多,故分为三部分:
等式证明(点击进入)
由积分判断函数零点个数(本文内容)
不等式证明(点击进入)
题型介绍:
这种题目的特征就是给你两个定积分,它们的值都为0,然后让你判断其中一个函数至少有两个不同的零点(或者是至少存在两个不同点使这个函数值为0)。具体题目如下:
这种题目,其实有两种常见的做法,一个就是罗尔定理,另一个就是反证法。本文也是从这两个方法进行展开,并且总结出了两个推论。有了这两个推论下次遇到这种类型的题目一击必杀。
方法一:罗尔定理证明
单纯讲题太局限,我首先给大家说一个推论吧:
推论一
证明过程
怎么想到这样证明的呢?思路解析如下:
证明思路解析:
其实也就是证明 f(x) 至少有两个不同的零点而已。常见的证明方法无非就是3种:
1.利用函数单调性;2.零点定理;3.罗尔定理。
但是,1,2两种方法是要我们知道 f(x) 的表达式或者相关条件,题目并没有。所以考虑看是否应该应用罗尔定理。罗尔定理需要找两个东西:1.原函数;2.使原函数相等的点。所以我们先找 f(x) 的原函数。观察题目条件中有
∫
a
b
f
(
x
)
d
x
=
0
\int_{a}^{b}f(x)dx=0
∫abf(x)dx=0 ,因此想到变限积分
F
(
x
)
=
∫
a
x
f
(
t
)
d
t
F(x)=\int_{a}^{x}f(t)dt
F(x)=∫axf(t)dt 作为 f(x) 的原函数。正好也找到了两个点
x
=
a
,
x
=
b
x=a,x=b
x=a,x=b ,使得
F
(
x
)
=
0
F(x)=0
F(x)=0 。接下来只需要再找一个不同点,使
F
(
x
)
=
0
F(x)=0
F(x)=0 ,进而可以使用两次罗尔定理得证。
此时还有两个条件没有用:
∫
a
b
f
(
x
)
g
(
x
)
d
x
=
0
和
g
′
(
x
)
≠
0
\int_{a}^{b}f(x)g(x)dx=0 和 g'(x)≠0
∫abf(x)g(x)dx=0和g′(x)=0 。我们注意 F(x) 可以看成是 f(x) 积分得到的,而 g’(x) 是 g(x)求导得到的。此时进行分部积分,即可建立条件之间的联系。之后得到
∫
a
b
F
(
x
)
g
′
(
x
)
d
x
=
0
\int_{a}^{b}F(x)g'(x)dx=0
∫abF(x)g′(x)dx=0 ,我们需要
F
(
ε
)
=
0
F(\varepsilon)=0
F(ε)=0 ,所以需要去除积分号,且有参数引入。那么就只有积分中值了。之后即找到3个不同的点,罗尔定理得证。
这里需要注意:由于我们要找三个不同的点,因此通过积分中值得到的
η
\eta
η 是不能等于 a 或者 b 的,而传统的积分中值得到的参数是属于闭区间,即
η
∈
[
a
,
b
]
\eta\in[a,b]
η∈[a,b] ,因此参数
η
\eta
η 可以等于a或b,故不适用。所以这里使用积分中值定理的推广版本,即得到的参数为
η
∈
(
a
,
b
)
\eta\in(a,b)
η∈(a,b) 。
进而得到了证明流程:
设
∫
a
x
f
(
t
)
d
t
=
F
(
x
)
→
\int_{a}^{x}f(t)dt=F(x) \rightarrow
∫axf(t)dt=F(x)→ 分部积分
→
\rightarrow
→ 推广积分中值定理
→
\rightarrow
→ 罗尔定理得证
例题解题过程:
由于开头两题满足本推论,故可以按照本推论的做法做。
方法二:反证法
还是先讲推论:
证明如下:
本题所证可以等效成 f(x) 在 (a,b) 内至少有两个不同的零点。其反面为: f(x) 在 (a,b) 内只有1个零点或没有零点。
没有零点的情况可以直接排除:由于
∫
a
b
f
(
x
)
d
x
=
0
\int_{a}^{b}f(x)dx=0
∫abf(x)dx=0 使用积分中值定理推广形式得,存在一点
ε
ϵ
(
a
,
b
)
\varepsilon \epsilon(a,b)
εϵ(a,b) ,使得
f
(
ε
)
=
0
f(\varepsilon)=0
f(ε)=0 ,故 f(x) 一定有零点
接下来考虑是否可能只有一个零点,即考虑
x
=
ε
x=\varepsilon
x=ε 为 f(x) 唯一零点。
一个函数在某个区间有唯一零点,只有如下两种情况:
通过图像可以判断,对于情况一而言函数在 [a,b] 上的积分是不可能为0的,所以只有情况二可能。
因此这里不妨假设,函数 f(x) 在
(
a
,
ε
)
(a,\varepsilon)
(a,ε) 上小于0,在
(
ε
,
b
)
(\varepsilon,b)
(ε,b) 上大于0。由于 g(x) 严格单调,所以不妨设其单调递增。因此有如下证明过程:
由于开头两题也满足本推论的形式,故也可以按照本推论的做法做。
例题解题过程:
第二题可以仿照着证明,大家可以留作练习。
所以综上,开头两题就有这两种方法解决。
到此结束~
我是煜神学长,考研我们一起加油!!!