视觉slam十四讲第二版ch13代码解析

总体流程

在这里插入图片描述

1.VO::init初始化
加载yaml参数文件
前端、后端、建图、显示初始化

2.初始成功开始RUN
step:读取图片,addframe:

3.addframe:
(1)双目初始化
一.左图检测特征点
二。右图光流跟踪特征点
三.结合内外参,三角化生成世界坐标
(2)跟踪track
一.拿之前两帧的差距作为位姿,光流寻找前后两帧的对应点,
二.g2o估计更新位姿
三.内点数量少于阈值80,就当前帧设为关键帧,检测更多特征点,右图光流跟踪左图,三角化生成世界坐标

知识点
1.C++ STL:list,map,,多线程,锁,智能指针
2.slam:三角化,后端优化

### 关于《视觉SLAM十四第二中的Eigen相关内容 在《视觉SLAM十四第二中,虽然主要讨论的是SLAM系统的理论基础和技术实现[^3],但Eigen库作为线性代数运算的重要工具,在多个章节都有提及和应用。 #### Eigen简介及其重要性 Eigen是一个高效的C++模板库,用于矩阵和向量操作。对于SLAM系统而言,Eigen提供了必要的数学支持来处理各种几何变换、优化问题等。由于其高效性和易用性,Eigen成为许多计算机视觉和机器人项目不可或缺的一部分[^5]。 #### 安装与配置 当涉及到具体安装时,建议按照官方文档或可靠教程来进行设置。需要注意的是,在遇到编译错误时不应急于重新安装整个环境;很多时候可能是某些细节上的疏忽所致。例如,有经验表明,初次尝试失败后不必轻易放弃当前本的Pangolin或其他依赖项,而应仔细排查其他可能的原因。 #### 应用实例 在实际编程实践中,Eigen被广泛应用于表示三维空间内的点云数据结构以及执行诸如旋转和平移之类的刚体运动学计算。下面给出一段简单的代码片段展示如何利用Eigen定义并操作齐次坐标系下的平移矩阵: ```cpp #include <iostream> #include <Eigen/Dense> using namespace std; using namespace Eigen; int main() { Vector3d t(0.7, 0.2, 1.5); // 平移向量 Matrix4d T = Matrix4d::Identity(); // 初始化单位矩阵 // 设置最后三列对应平移分量 T.block<3, 1>(0, 3) = t; cout << "Translation matrix:\n" << T << endl; return 0; } ``` 这段程序创建了一个基于输入参数`Vector3d t`构建出来的四维仿射变换矩阵`T`,其中包含了指定方向上移动的信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值