颠覆现有Agent范式、让AI拥有“主动能动性!
清华&面壁等团队最新开源新一代主动Agent交互范式 ( ProActive Agent)。
图1:两种人类与智能体交互形式的比对。左侧的被动式Agent只能被动接受用户指令并生成回复,而右侧的主动式Agent 可以通过观测环境主动推断与提出任务。
当前,哪怕是ChatGPT等最先进的AI Agent都是传统的被动式Agent (上图1左侧所示),即需要用户通过明确的指令显示告诉Agent应该做什么,Agent才能继续执行接下来的任务。
新范式下的Agent不再是简单的指令执行者,而是升级成为了具有”眼力见”的智能助手(上图1右侧所示)。
它具备”眼中有活、主动帮助”的主动能动性,能够主动观察环境、预判用户需求,像”肚子里的蛔虫”一样,在未被明确指示的情况下主动帮用户排忧解难。
为了更清晰地理解这一技术突破的意义,我们可以通过以下表格来详细分析对比两种范式的本质区别:
特征维度 | 被动式Agent(当前范式) | 主动式Agent(新范式) |
交互模式 | 需要用户下达指令才能执行任务 | 能主动观察环境并采取行动 |
角色定位 | 忠诚的被动执行者 | 具有主动意识的合作者 |
决策能力 | 依赖用户下达指令 | 具备自主思考和决策能力 |
环境感知 | 局限于具体指令范围 | 能感知并理解上下文环境 |
协作模式 | 人类单向下达命令AI再执行 | 可以实现双向人机协作 |
环境适应性 | 固定模式服务 | 持续观察学习用户行为 灵活调整个性化服务 |
主动Agent交互范式在日常生活中有丰富的应用潜力,以下是一些近期预想可实现的场景:
特征维度 | 主动式Agent(新范式) | 价值体现 |
个人助理 | 智能日程管理、闹钟设置等等 | 基于对话自动识别并设置提醒 |
文件管理 | 自动存储与重命名 | 智能识别文件特征并优化管理 |
生活服务 | 行程安排、健康管理 | 根据用户习惯主动提供建议 |
视障人士辅助 | 实时环境描述 障碍物预警 文字识别朗读 | 主动发现潜在危险并预警 智能识别周围环境变化 |
听障人士支持 | 声音可视化 实时字幕生成 | 将周围声音转换为视觉提示 自动生成实时对话字幕 |
行动障碍辅助 | 智能家居控制 动作意图预测 | 预判用户需求自动控制设备 减少不必要的肢体动作 |
主动Agent交互范式应用场景demo演示
场景1:
在一段情侣聊天的场景中,男生邀请女生一起要在周六去环球影城并于早上八点来接女生。
当Agent获取用户授权之后随时保持在线的“候命状态”,当Agent通过上下文聊天内容实时识别到女生的需求,在没有用户明确下指令的情况下,Agent主动帮女生定了一个周六早上七点的闹钟用来提醒起床。
场景2:
当用户在电脑上接收到一份重要文件(学习课件、发票等)时,Agent 主动帮用户把文件存到了本地,并自动识别出PDF文件第一页显示的标题然后帮用户把文件名进行了重命名。
该研究除了提出以上开创性的主动Agent之外,还通过采集不同场景下的人类活动数据构建了一个环境模拟器,进而构建了数据集 ProactiveBench,通过训练模型获得了与人类高度一致的奖励模型,并比对了不同模型在数据集下的性能。
主动Agent技术原理
下图展示了主动Agent技术原理的整体流程。为了让智能体能够主动提出任务,该研究设计了三个组件以模拟不同场景下的环境信息,用户行为和对智能体提出任务的反馈。
图2 数据生成过程总览。该过程包含了初始环境与任务设置,事件生成,主动预测,用户判断和行动执行。
其中:
1、环境模拟器模拟了一个特定环境,并为智能体的交互提供了一个沙盒条件。
模拟器通过使用基于 Activity Watcher软件采集到的真实人类数据以提升生成事件的质量。
环境模拟器的主要功能为事件生成与状态维护:通过使用GPT-4o 从人类注释员处收集的种子事件以生成一个需要交互的具体环境,同时生成所有相关实体以让智能体执行任务。
对于每个场景,环境模拟器接收用户活动并生成详细的,逻辑通顺合理的事件,环境模拟器将会持续生成事件,更新实体状态,产生特定反馈,直到当前环境下没有更多事件以供生成。
2、主动智能体将会通过环境模拟器提供的信息预测用户意图,生成预测任务。
每当智能体接受一个新事件后,它将首先更新自己的记忆,结合用户之前的反馈和历史交互信息,主动智能体将能够结合用户性格提出可能的任务。
如果主动智能体没有检测到需要,其将保持静默,反之将会提出一个任务。一旦此任务被用户接受,那么主动智能体将在环境模拟器中执行该任务,并进而产生后续的系列事件。
3、用户智能体将模拟用户行为并对主动智能体的任务做出反馈。
用户智能体为经过提示的 GPT-4o,在获取预测之后,用户智能体将会决定是否接受任务。
该研究通过从人类标注员处收集判断,并训练一个奖励模型以模拟这一过程。人类标注员在研究开发的标注平台上进行标注,对特定时间下,9个不同的大语言模型生成的多样化预测进行判断,并通过多数投票的方式决定某个回合用户是否具有需求,以及用户倾向于接受什么类型的任务。
值得一提的是,人类标注员在测试集上达到了91.67%的一致性,充分说明了测试集的可靠性。
主动Agent实验研究
该研究提出了一套度量方式衡量奖励模型和人工标注员的一致性。
-
需求遗落(MN):人工标注认为需要帮助而奖励模型认为无需帮助。
-
静默应答(NR):人工标注和奖励模型都认为无需帮助。
-
正确检测(CD):人工标注和奖励模型都认为需要帮助。
-
错误检测(FD):人工标注认为无需帮助而奖励模型认为需要帮助。
在这四个度量方式上进行召回率、精确度、准确度和 F1 分数的计算,从结果上看,所有的现有模型都在正确检测上表现良好,但对于其他指标则性能较差。现有模型倾向于接受智能体的任务,尽管可能毫无助益。相对的,该研究训练的模型性能最优,因此被选为 ProactiveBench 的奖励模型。
图表3 不同模型作为奖励模型的评测结果。研究展示了模型与人工标注员多数投票结果之间的一致性。在 LLaMA-3.1-instruct-8B 微调的模型取得了最好结果。
通过奖励模型,可以进一步衡量主动智能体的性能表现。该研究在不同的模型上进行了评估,并将模型预测的结果交由奖励模型进行评价。从结果上看,闭源模型会倾向于主动提出任务而不能在用户无需帮助时保持静默,模型提供的任务往往过于抽象或无用,以至于产生较高的误报率。对于开源模型,经过数据集训练的模型明显更优,这证实了研究数据合成流水线的有效性。同时,经过训练的模型也在误报率上有了明显的下降,尽管提供不必要的帮助的情况仍然存在。
图表4 不同模型在 ProactiveBench 数据上的评测结果。GPT-4o 在闭源模型中脱颖而出,对于开源模型,基于 Qwen2-7B 微调的结果取得最好成果。
研究同样进行了消融学习以研究提出任务数量和用户反馈对于智能体性能的影响。通过让模型提出多个可能的任务并一一进行判断,所有的模型在指标上都有明显的上升。通过给予模型来自奖励模型的反馈,所有的模型误报率都有所下降,准确度有所上升,但在召回率的表现上有明显下降。通过结合奖励模型,主动智能体可以更好的检测用户需求,降低误报率。
图表5 基准线,多任务预测,获取反馈之间的比较。结果表明所有的模型都有所提升。模型的误报率由于接受预测的可能性更高或被奖励模型改进而显著下降。
主动Agent(ProActive Agent)范式有望将AI从被动的工具转变为具有洞察力和主动帮助的智能协作,从而开启人机交互新革命。
论文链接:https://arxiv.org/abs/2410.12361
Github地址:https://github.com/thunlp/ProactiveAgent
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈