最小二乘法的概率解释

当我们面对回归问题时,为什么会采用线性回归,最小二乘法来定义成本函数,即1/2的差的平方和。

这里给出概率解释:

我们拟合的直线的函数值即预测值必然和真实值会存在误差。那么假定一个等式:

            

其中各个样本的误差项,是独立同分布且服从高斯分布(正态分布)。(可根据中心极限定理来看)

即就是:

                     

            

均值为0,容易理解.

所以,

            

也就是要面对 在以为参数给定一个x时预测值y是真实值的概率服从正太分布,要求得概率最大时的

最大似然估计:

            

            

            根据此过程,要求此函数的最大值 ,需求上式中后项函数  的最小值,

                   

            此函数又即为最小二乘估计的成本函数。

结论:上式推导即为最小二乘的概率解释。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TransientYear

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值