棋盘覆盖

题目描述:

  在一个2^k * 2k(k为正整数,k<=10,length=2k)个方格组成的棋盘中,恰有一个方格与其他方格不同,称该方格为一特殊方格(其坐标为aa,bb,分别代表行坐标号和列坐标号),以及有四种L型骨牌(如下图)。求用若干块这种L型骨牌实现除该特殊点棋盘的全覆盖。(本题要求采用分治算法做)

在这里插入图片描述

输入格式:

输入三个数,分别是aa,bb,length.

输出格式:

输出整个棋盘。其中特殊方格填为0,然后铺棋盘的顺序为:先铺四个子棋盘交界的部分,然后递归的对每个子棋盘按照左上,右上,右下,左下的顺时针顺序铺满棋盘。每一块骨牌中三个方格数字相同,按照顺序标号,即第一块骨牌全标为1,第二块骨牌全标为2,…,以此类推。输出的每个数占4个场宽,右对齐。

输入样例:
1 1 4

表示:特殊格子为(1,1),棋盘有4行4列。

输出样例:
   0   2   3   3
   2   2   1   3
   5   1   1   4
   5   5   4   4

表示:先铺三个1(一块L型骨牌),再铺三个2,…,最后铺三个5.

解题思路:

  分治的技巧在于如何划分棋盘,使划分后的子棋盘的大小相同,并且每个子棋盘均包含一个特殊方格,从而将原问题分解为规模较小的棋盘覆盖问题。
   k>0时,可将2k×2k的棋盘划分为4个2(k-1)×2(k-1)的子棋盘,这样划分后,由于原棋盘只有一个特殊方格,所以,这4个子棋盘中只有一个子棋盘包含该特殊方格,其余3个子棋盘中没有特殊方格。
  为了将这3个没有特殊方格的子棋盘转化为特殊棋盘,以便采用递归方法求解,可以用一个L型骨牌覆盖这3个较小棋盘的会合处,从而将原问题转化为4个较小规模的棋盘覆盖问题。递归地使用这种划分策略,直至将棋盘分割为1×1的子棋盘。


#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
using namespace std;
#define N 1024

int Board[N][N];
int count = 1;


//(tr,tc)表示棋盘的起始位置 
//(dr,dc)表示特殊点的位置
void ChessBoard(int tr,int tc,int dr,int dc,int length){   
	if(length == 1){
		return;
	}
	int t = count++;
	int s = length/2;
	if(dr<tr+s && dc<tc+s){         //当特殊点在左上角的子棋盘上
		ChessBoard(tr,tc,dr,dc,s);
	}
	else{                           //当特殊点不在左上角的子棋盘上
		Board[tr+s-1][tc+s-1] = t;   //将左上角的子棋盘的右下角的方格变成 特殊点
		ChessBoard(tr,tc,tr+s-1,tc+s-1,s);   //递归搜索此棋盘 
	}
    
	if(dr<tr+s && dc>=tc+s){
		ChessBoard(tr,tc+s,dr,dc,s);
	}
	else{
		Board[tr+s-1][tc+s] = t;
		ChessBoard(tr,tc+s,tr+s-1,tc+s,s);
	}
    
	if(dr>=tr+s && dc>=tc+s){
		ChessBoard(tr+s,tc+s,dr,dc,s);
	}
	else{
		Board[tr+s][tc+s] = t;
		ChessBoard(tr+s,tc+s,tr+s,tc+s,s);
	}
    
	if(dr>=tr+s && dc<tc+s){
		ChessBoard(tr+s,tc,dr,dc,s);
	}
	else{
		Board[tr+s][tc+s-1] = t;
		ChessBoard(tr+s,tc,tr+s,tc+s-1,s);
	}
}

int main()
{
	int aa,bb,length;
	cin>>aa>>bb>>length;
	memset(Board,0,sizeof(Board));  //将棋盘的所有值都赋值为0 
	ChessBoard(0,0,aa-1,bb-1,length);
	for(int i=0; i<length; i++){
		for(int j=0; j<length; j++)
			printf("%4d",Board[i][j]);
		cout<<endl;
	}
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

玳宸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值