题目描述:
在一个2^k * 2k(k为正整数,k<=10,length=2k)个方格组成的棋盘中,恰有一个方格与其他方格不同,称该方格为一特殊方格(其坐标为aa,bb,分别代表行坐标号和列坐标号),以及有四种L型骨牌(如下图)。求用若干块这种L型骨牌实现除该特殊点棋盘的全覆盖。(本题要求采用分治算法做)
输入格式:
输入三个数,分别是aa,bb,length.
输出格式:
输出整个棋盘。其中特殊方格填为0,然后铺棋盘的顺序为:先铺四个子棋盘交界的部分,然后递归的对每个子棋盘按照左上,右上,右下,左下的顺时针顺序铺满棋盘。每一块骨牌中三个方格数字相同,按照顺序标号,即第一块骨牌全标为1,第二块骨牌全标为2,…,以此类推。输出的每个数占4个场宽,右对齐。
输入样例:
1 1 4
表示:特殊格子为(1,1),棋盘有4行4列。
输出样例:
0 2 3 3
2 2 1 3
5 1 1 4
5 5 4 4
表示:先铺三个1(一块L型骨牌),再铺三个2,…,最后铺三个5.
解题思路:
分治的技巧在于如何划分棋盘,使划分后的子棋盘的大小相同,并且每个子棋盘均包含一个特殊方格,从而将原问题分解为规模较小的棋盘覆盖问题。
k>0时,可将2k×2k的棋盘划分为4个2(k-1)×2(k-1)的子棋盘,这样划分后,由于原棋盘只有一个特殊方格,所以,这4个子棋盘中只有一个子棋盘包含该特殊方格,其余3个子棋盘中没有特殊方格。
为了将这3个没有特殊方格的子棋盘转化为特殊棋盘,以便采用递归方法求解,可以用一个L型骨牌覆盖这3个较小棋盘的会合处,从而将原问题转化为4个较小规模的棋盘覆盖问题。递归地使用这种划分策略,直至将棋盘分割为1×1的子棋盘。
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
using namespace std;
#define N 1024
int Board[N][N];
int count = 1;
//(tr,tc)表示棋盘的起始位置
//(dr,dc)表示特殊点的位置
void ChessBoard(int tr,int tc,int dr,int dc,int length){
if(length == 1){
return;
}
int t = count++;
int s = length/2;
if(dr<tr+s && dc<tc+s){ //当特殊点在左上角的子棋盘上
ChessBoard(tr,tc,dr,dc,s);
}
else{ //当特殊点不在左上角的子棋盘上
Board[tr+s-1][tc+s-1] = t; //将左上角的子棋盘的右下角的方格变成 特殊点
ChessBoard(tr,tc,tr+s-1,tc+s-1,s); //递归搜索此棋盘
}
if(dr<tr+s && dc>=tc+s){
ChessBoard(tr,tc+s,dr,dc,s);
}
else{
Board[tr+s-1][tc+s] = t;
ChessBoard(tr,tc+s,tr+s-1,tc+s,s);
}
if(dr>=tr+s && dc>=tc+s){
ChessBoard(tr+s,tc+s,dr,dc,s);
}
else{
Board[tr+s][tc+s] = t;
ChessBoard(tr+s,tc+s,tr+s,tc+s,s);
}
if(dr>=tr+s && dc<tc+s){
ChessBoard(tr+s,tc,dr,dc,s);
}
else{
Board[tr+s][tc+s-1] = t;
ChessBoard(tr+s,tc,tr+s,tc+s-1,s);
}
}
int main()
{
int aa,bb,length;
cin>>aa>>bb>>length;
memset(Board,0,sizeof(Board)); //将棋盘的所有值都赋值为0
ChessBoard(0,0,aa-1,bb-1,length);
for(int i=0; i<length; i++){
for(int j=0; j<length; j++)
printf("%4d",Board[i][j]);
cout<<endl;
}
return 0;
}