一、inferCNV内容
CNV在空转中的应用前景也许会更大
二、拟时序分析
主要流程
关于估计文库大小及分散度: 1. 目的是计算每个细胞的大小因子,进行归一化处理从而消除测序深度的影响。2. 估计每个基因的离散度,用于衡量基因表达的变异性,估计离散度可以用于后续的差异表达分析。
基因集选择的几种常见策略:1. 基于Seurat鉴定的marker genes;2. 基于monocle分析鉴定的差异基因;3. 基于高变基因;4. 其他自定义的基因集。
结果展示
monocle2中通过root_state参数进行起始点设置,而monocle3只需要点点鼠标即可。
拟时序分析的结果一定要结合生物学知识,如果不符合的话是需要调整数据的,实在不行不能硬凑。
三、RNA速率分析
开发者发现非剪切和剪切的mRNA的降解速度存在不一致,并且非剪切和剪切的mRNA也代表不同的成熟状态,因此就可以通过这种mRNA生成和降解过程的动态变化来推断细胞分化发育轨迹。
主要流程
分析过程涉及python/linux
结果展示
这里可以了解一下剪接和未剪接是如何定义的
-
跳过整合intron, 横跨两个exon边界的reads,认为是来自经过剪接的成熟RNA;
-
跨过exon/intron边界的reads是来自于未经过剪接的mRNA;
-
完全在exon中的reads既可以来自成熟的mRNA,也可以来自为未剪接的mRNA;
-
完全在intron中的reads可能来自于非特异背景(噪音)或者是潜在的其他转录本;
这里可以提一嘴cytotrace这个工具,这个工具是通过先验知识(基因情况)去判断细胞发育程度,跟RNA速率分析可以联合使用。
既往推文:
-
inferCNV:scRNA-seq数据推断染色体拷贝数变化 https://mp.weixin.qq.com/s/pUAQvYTgebSuuvDlV6mo4g
-
拟时序分析:单细胞拟时序/轨迹分析原理及monocle2流程学习和整理 https://mp.weixin.qq.com/s/aVUpRIkDi83B8_Y_BSBkVA
-
CytoTRACE2单细胞分化潜力预测工具学习 https://mp.weixin.qq.com/s/inF9iGy2X9D2CZLzQBtRdw
参考资料:
-
武汉大学/菲沙基因公开课/生信技能树
-
Single-cell analysis reveals a unique microenvironment in peri-implantitis. J Clin Periodontol. 2024 Apr 2. doi: 10.1111/jcpe.13982
-
Single-cell and long-read sequencing to enhance modelling of splicing and cell-fate determination. Comput Struct Biotechnol J. 2023 Mar 20:21:2373-2380.
注:若对内容有疑惑或者有发现明确错误的朋友,请联系后台(欢迎交流)。更多内容可关注公众号:生信方舟
最近笔者正在经历秋招,发现临床博士真是高手如云,深感竞争激烈 hhh。不过还是希望所有和我一样正在经历秋招的硕博们都能顺利上岸哦~!
- END -