单细胞
文章平均质量分 82
凑齐六个字吧
热爱医学,执着科研。公众号:生信方舟
展开
-
空间单细胞转录组cell2location分析流程学习
cell2location分析流程学习原创 2024-10-21 18:38:58 · 637 阅读 · 0 评论 -
单细胞空间转录组RCTD去卷积分析学习和整理
RCTD 通过整合单细胞和空间转录组学数据,能够较为精确地为空间点(spots)分配细胞类型或细胞类型的混合,以便更好地理解空间组织结构中的基因表达情况。原创 2024-10-20 11:24:49 · 1363 阅读 · 0 评论 -
单细胞空间转录组分析流程学习python版(三)
空转python版学习原创 2024-10-19 14:49:29 · 513 阅读 · 0 评论 -
单细胞空间转录组分析流程学习(二)
单细胞空间转录组分析流程学习(二)原创 2024-10-18 18:31:49 · 726 阅读 · 0 评论 -
单细胞copyKat分析学习和整理
CopyKAT(肿瘤拷贝数核型分析)是一种使用综合贝叶斯方法的计算工具,能够在单细胞中以5MB分辨率检测全基因组非整倍体,以便从高通量单细胞RNA测序数据中区分肿瘤细胞与正常细胞,并识别肿瘤亚克隆。原创 2024-10-16 23:04:17 · 884 阅读 · 0 评论 -
单细胞Ro/e分析学习和整理
Ro/e指数的目前的用法更像是增加分析的细粒度,通过统计学结果告诉大家组织内部不同细胞簇的实际情况和预测情况的差异原创 2024-10-14 10:01:38 · 1018 阅读 · 0 评论 -
单细胞METAFlux分析学习和整理
METAFlux是基于METAbolic Flux balance analysis (通量平衡分析的框架之上),以营养感知的方式表征整个代谢回路,并输出非退化性的通量,一共有13082个代谢物可以计算原创 2024-10-13 08:30:05 · 420 阅读 · 0 评论 -
单细胞hdWGCNA分析学习和整理
hdWGCNA的分析逻辑是跟bulkRNA数据中的WGCNA基本一样,只是hdWGCNA中多了一步metacell过程,有助于减少无用的信息(单细胞数据有很多零值,会影响分析结果)。原创 2024-10-05 16:50:03 · 991 阅读 · 0 评论 -
单细胞scDist细胞扰动差异分析学习
scDist通过分析不同状态下细胞的距离来找到差异最大的细胞亚群(见下图的A),然后再分析每一个细胞亚群的PCA通过线性的混合模型并结合最终的系数去预估不同干预方式下细胞群之间的距离原创 2024-10-04 22:06:07 · 551 阅读 · 0 评论 -
单细胞scMetabolism代谢相关通路分析学习和整理
scMetabolism一个单细胞水平的代谢相关通路分析工具。内置了KEGG_metabolism_nc和REACTOME_metabolism两个库的代谢通路信息。分析方法可选择VISION、AUCell、ssgsea和gsva这四种,默认是VISION。其他没有什么需要特殊介绍的。原创 2024-10-02 09:32:35 · 320 阅读 · 0 评论 -
单细胞Augur细胞扰动差异分析学习和整理
细胞受到各种外部刺激之后导致状态/功能/形状等发生变化(暂时/永久),这种改变现象可以被笼统称为“扰动”。而我们作为生物医学领域的研究者,恰恰就是要研究这种“扰动”,以此探明生物学表象下的更深层次“逻辑”。原创 2024-09-30 14:08:09 · 733 阅读 · 0 评论 -
单细胞miloR分析(基于 KNN 图的细胞差异丰度分析方法)
iloR先随机定义细胞中的细胞节点(数据点),然后通过K最近邻法(K-neareat neighbors)去识别所定义节点与周围的其他细胞数据点之间的邻近关系,找到跟这些节点最近的(比如欧几里得法)其他数据点(细胞)原创 2024-09-29 19:27:49 · 740 阅读 · 0 评论 -
单细胞Seruat和h5ad数据格式互换(R与python)方法学习和整理
KS科研分享与服务:https://mp.weixin.qq.com/s/Wt9TU5Qk3yqPDlRlXr6BfQ。单细胞天地: https://mp.weixin.qq.com/s/qHBeQnYJdK0ATGlTOROPeA。生信菜鸟团: https://mp.weixin.qq.com/s/8fwJSc9Dnp8h_Suv76oXVA。这种方法得到的数据是SeruatV4版本的,所以如果要用于SeruatV5的话还需要再转化一下。:若对内容有疑惑或者有发现明确错误的朋友,请联系后台(欢迎交流)。原创 2024-09-27 22:36:56 · 1245 阅读 · 0 评论 -
单细胞SCENIC简单可视化分析学习和整理
SCENIC简单可视化分析学习和整理原创 2024-09-23 13:59:21 · 867 阅读 · 0 评论 -
单细胞monocle3分析流程再整理
定义root cell, 推断拟时方向# 结合先验知识自定(示例数据)# 可视化示例数据,起点是随便点的。原创 2024-09-22 20:29:16 · 421 阅读 · 0 评论 -
单样本Cellchat(V2)细胞通讯分析学习和整理
细胞通讯分析是一种研究不同细胞类型之间如何通过信号分子(如配体和受体)进行相互交流和调控的分析方法。它在揭示细胞间相互作用的机制,理解组织和器官如何协调运作方面具有重要意义。原创 2024-09-21 00:18:02 · 2269 阅读 · 0 评论 -
单细胞BisqueRNA和BayesPrism去卷积分析工具简单比较
BisqueRNA使用单细胞 RNA-seq 数据作为参考,通过线性回归模型将bulk RNA-seq 数据去卷积为各个细胞类型的贡献。快速、直接使用单细胞数据作为参考,对各细胞类型的表达特征没有特别的假设原创 2024-09-20 08:06:36 · 1124 阅读 · 0 评论 -
CytoTRACE2可视化进阶(修改坐标维持umap图前后一致)
如何让CytoTRACE2分析完之后的umap图坐标前后一致呢?原创 2024-09-19 00:28:21 · 330 阅读 · 0 评论 -
CytoTRACE2单细胞分化潜力预测工具学习
CytoTRACE2可辅助判断单细胞拟时序分析的细胞起点原创 2024-09-18 08:50:37 · 459 阅读 · 2 评论 -
单细胞CCA整合流程学习(SeuratV5/V4)
CCA 通过计算两个(或多个)数据集的线性组合,使这些组合之间的相关性最大化,从而找到不同数据集间的共同信号。原创 2024-09-17 14:05:12 · 1152 阅读 · 0 评论 -
单细胞非负矩阵分解分析python版(cNMF)学习
这时候我们再评价悟空的时候评价方式可能会略有不同,我们可能还是会说悟空是只猴子,但我们也会提到打妖怪的时候每次都悟空去打,以及悟空的沟通能力都值得我们所有人学习等等,这些评价的话语是看了很多集的故事而总结出来的,没有十分显著的描述词汇,但诉说的语句又都是正确。再后来人到了中年,我们的知识水平又到了进一步的提高。小时候的我们看了很多遍西游记,但那时候懵懵懂懂,看到悟空的时候我们一般会按照主观印象对它进行评价,首先可能会说这是只猴子,接下来可能会说这只猴子长的挺有趣的,最后可能会说这只猴子还挺聪明,这种。原创 2024-09-15 23:00:38 · 1396 阅读 · 0 评论 -
去除单细胞数据中环境游离的RNA污染-decontX工具学习
基于微流控的单细胞技术会导致环境中污染的RNA增多,这种环境中的RNA是来自于自受压或经历细胞凋亡的细胞。当环境 RNA 掺入液滴中并与细胞的天然 mRNA一起被标记和扩增时,就会发生交叉污染原创 2024-09-14 14:12:38 · 601 阅读 · 0 评论 -
DoubletFinder去除双细胞分析学习
在单细胞RNA测序过程中,有时两个或多个细胞可能在制备过程中意外结合成一个单一的"假细胞",称为双峰细胞或双倍体。这些双峰细胞可能会扭曲数据分析和解释,因此,需要使用一些方法对它们进行识别和剔除。原创 2024-09-12 11:47:46 · 1010 阅读 · 0 评论 -
单细胞拟时序/轨迹分析monocle3流程学习和整理
单细胞拟时序/轨迹分析monocle3流程学习和整理原创 2024-09-11 15:58:07 · 2376 阅读 · 0 评论 -
单细胞拟时序/轨迹分析原理及monocle2流程学习和整理
轨迹分析的关键步骤是降维和轨迹建模,降维是把复杂的数据拆解为不同的关键部分,而这每个关键部分又可以跟生物学上不同的特征相映射在一起,之后再通过定义轨迹的起点和终点来构建出轨迹的形状原创 2024-09-09 20:18:37 · 2381 阅读 · 0 评论 -
单细胞细胞周期矫正分析流程学习(Seurat)以及关于是否应该矫正的思考
单细胞细胞周期矫正的目的从宽泛的角度来说是因为它可以消除由于细胞周期阶段不同而导致的基因表达异质性。在单细胞数据中,不同细胞可能处于不同的细胞周期阶段(如G1、S、G2或M期),这些阶段会影响细胞的基因表达模式,尤其是那些与细胞周期密切相关的基因。如果不进行细胞周期矫正,这些周期性变化的基因可能会误导后续的数据分析,如聚类和差异表达分析,导致分析结果不能准确反映细胞的生物学状态和异质性。原创 2024-09-08 22:57:58 · 817 阅读 · 0 评论 -
单细胞降维聚类分群注释全流程学习(seruat5/harmony)
单细胞降维聚类分群注释全流程学习(seruat5/harmony)原创 2024-09-07 17:04:53 · 1059 阅读 · 0 评论 -
常见不同类型单细胞数据读取及Seurat对象创建方法整理(单多样本/10X/h5/txt/csv/tsv)
常见不同单细胞数据类型读取及Seurat对象创建方法整理(单多样本/10X/h5/txt/csv/tsv)原创 2024-09-06 21:52:04 · 1536 阅读 · 0 评论 -
基因调控网络(gene regulatory network-GRN)分析基础概念
理论上而言,如果需要展示更多影响转录调控的因素的话,那就是说要把调节转录的因素都要去探索一下,比如可以去做甲基化的检测,做染色质的ATAC-seq,当然更应该做一下转录因子的chip-seq等。,如果只知道转录因子和非转录因子的话那两者未必会存在结合调控,因此就必须知道在靶基因上游位置里面存在结合位点,这些结合位点里就存在一个/多个串联的motif,当得到了转录因子和motif配对关系的话,就可以是的后续构建的调控网络信息更加的准确。这一过程受到染色质结构的影响,染色质的开放或关闭会影响转录因子的结合。原创 2024-08-21 00:02:24 · 1081 阅读 · 0 评论 -
单细胞irGSEA分析:整合多种富集分析方式的R包
irGSEA整合了多种基于单个细胞表达等级的富集分析方法(AUCell、UCell、singscore、ssGSEA、JASMINE和Viper),并通过秩聚合算法(robust rank aggregation, RRA)对差异分析的结果进行评估,筛选出在这种几种方法中表现出相似的富集程度的差异基因集。通俗的来说,这个R包就是,获取在。原创 2024-08-16 20:34:54 · 1006 阅读 · 0 评论 -
pseudobulks单细胞差异基因分析
之前绘制过FindMarkers/FindAllmarkers差异分析后的单细胞差异基因火山图,除了FindMarkers/FindAllmarkers这种方法以外,pseudobulks是另一种单细胞差异基因分析的方法,这次就来学习和整理一下。原创 2024-08-15 10:22:32 · 1247 阅读 · 0 评论 -
BayesPrism(贝叶斯棱镜法)可提取单细胞数据去卷积后将信息映射至bulkRNA数据
贝叶斯棱镜法作为一种工具可以根据scRNA数据(作为先验模型)去推断bulkRNA数据中肿瘤微环境组成(不同免疫细胞组分/不同细胞群)和基因表达情况。原创 2024-07-15 22:59:53 · 1426 阅读 · 0 评论 -
Scissor算法-从含有表型的bulkRNA数据中提取信息进而鉴别单细胞亚群
如何将大量的含有临床信息/表型的bulk RNA测序数据和单细胞数据构成联系,这也是算法开发者们所重点关注的方向原创 2024-07-09 19:18:11 · 1610 阅读 · 0 评论 -
单细胞差异基因火山图绘制
做完单细胞差异基因分析(FindMarkers/FindAllmarkers)之后,按照常规流程绘制出来的火山图看上去会很奇怪。原创 2024-06-27 15:26:40 · 1160 阅读 · 0 评论 -
AUCell和AddModuleScore函数进行基因集评分
AUCell 和AddModuleScore 分析是两种主流的用于单细胞RNA测序数据的基因集活性分析的方法。原创 2024-06-22 16:43:38 · 1719 阅读 · 0 评论 -
inferCNV:scRNA-seq数据推断染色体拷贝数变化
nferCNV用于探索肿瘤单细胞RNA-Seq 数据,以确定体细胞大规模染色体拷贝数改变的证据,例如整个染色体或大片段染色体的增益或缺失。这是通过与一组参考“正常”细胞(这里的正常细胞可自行定义)进行比较,探索肿瘤基因组各部位基因的表达强度来完成的。热图展示每个染色体的相对表达强度,并且与“正常”细胞相比,肿瘤基因组的哪些区域过表达或降低(异常)。原创 2024-06-12 16:41:09 · 1680 阅读 · 0 评论 -
DecoupleR/CollecTRI network-单细胞转录因子活性分析
DecoupleR/CollecTRI networ方便快捷的单细胞转录因子活性分析原创 2024-05-30 10:59:34 · 1311 阅读 · 0 评论