LLM应用的例子LLM use cases and tasks

您可能会认为LLMs和生成性AI主要关注聊天任务。毕竟,聊天机器人非常受到关注并且备受瞩目。下一个词的预测是许多不同功能背后的基本概念,从基本的聊天机器人开始。
在这里插入图片描述

但是,您可以使用这种概念上简单的技术执行文本生成中的其他各种任务。例如,您可以要求模型根据提示写一篇文章,
在这里插入图片描述

或者总结您提供的对话作为提示的对话,模型使用这些数据以及其对自然语言的理解来生成摘要。
在这里插入图片描述

您可以使用模型执行各种翻译任务,从传统的两种不同语言之间的翻译,例如法语和德语,或英语和西班牙语。
在这里插入图片描述

或者将自然语言翻译为机器代码。例如,您可以要求模型编写一些Python代码,该代码将返回DataFrame中每列的平均值,模型将生成您可以传递给解释器的代码。
在这里插入图片描述

您可以使用LLMs执行像信息检索这样的小型、专注的任务。在此示例中,您要求模型识别新闻文章中提到的所有人和地点。这被称为命名实体识别,一个词分类。模型参数中编码的知识理解使其能够正确执行此任务并将请求的信息返回给您。
在这里插入图片描述

最后,一个活跃的发展领域是通过将它们连接到外部数据源或使用它们来调用外部API来增强LLMs。您可以使用此功能为模型提供其预训练中不知道的信息,并使您的模型能够与真实世界互动。
在这里插入图片描述

您将在课程的第3周中了解更多关于如何做到这一点的信息。开发人员已经发现,随着基础模型的规模从数亿个参数增长到数十亿,甚至数千亿,模型所拥有的语言理解也在增加。模型参数中存储的这种语言理解是处理、推理并最终解决您给予它的任务的内容,
在这里插入图片描述

但同样真实的是,较小的模型可以被微调以在特定的专注任务上表现良好。您将在课程的第2周中了解更多关于如何做到这一点的信息。LLMs在过去几年中展现出的能力的迅速增长主要归功于为它们提供动力的架构。让我们继续观看下一个视频,以便更仔细地了解。

参考

https://www.coursera.org/learn/generative-ai-with-llms/lecture/7zFPm/llm-use-cases-and-tasks

### DeepSeek R1 Model Specifications and Details Related to PVG The DeepSeek R1 model is a significant advancement within the realm of large language models, focusing on enhancing performance through sophisticated training methodologies. Although specific parameters for the DeepSeek R1 may not be explicitly outlined in standard documentation, its development aligns closely with advanced techniques such as those described by the Prover-Verifier Game (PVG) module. In the context provided, the core concept behind the PVG involves iterative multi-round training aimed at improving both prover and verifier capabilities[^2]. During each round, verifiers employ supervised learning strategies to predict the accuracy of content sampled from previous iterations' provers. This process ensures that subsequent rounds benefit from refined predictions and evaluations, thereby boosting overall system efficiency and reliability. For the DeepSeek R1 specifically, it leverages these principles but extends them into practical applications like integrating with platforms such as Swarm or developing complex projects involving multiple intelligent agents[^1]. Such integrations require robust parameter tuning alongside efficient handling mechanisms which are influenced heavily by concepts similar to what has been explained regarding PVG modules. Additionally, while exact numerical values might vary depending upon use cases, typical characteristics expected out of high-performance LLM architectures include extensive token limits exceeding billions along with optimized memory management systems ensuring smooth operation even under heavy computational loads. These aspects contribute towards making sure models can handle diverse tasks ranging from simple text generation up until intricate problem-solving scenarios requiring deep contextual understanding combined with logical reasoning abilities. Below showcases an illustrative code snippet demonstrating how one could potentially initialize settings when working around environments utilizing components analogous to ones mentioned above: ```python import deepseek as ds model = ds.Model('r1', config={ 'max_tokens': 8000, 'temperature': 0.7, 'top_p': 0.95, }) response = model.generate(prompt="Describe your approach using PVG methodology.") print(response) ``` This example initializes a hypothetical instance named `model`, setting key hyperparameters including maximum tokens allowed per input sequence (`max_tokens`), randomness factor controlling creativity versus determinism during output creation(`temperature`) ,and probability mass cutoff determining word selection likelihood based off top probable choices available after processing inputs(`top_p`).
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值