车辆检测--A Closer Look at Faster R-CNN for Vehicle Detection

A Closer Look at Faster R-CNN for Vehicle Detection
Intelligent Vehicles Symposium , 2016 :124-129

本文主要分析了 Faster R-CNN 对于车辆检测这个问题的性能表现,尝试了各种训练尺寸和测试图像尺寸

Examples from the KITTI car dataset
这里写图片描述

The network structure of Faster R-CNN
这里写图片描述

训练数据集和测试数据集
这里写图片描述

数据集上车辆尺寸分布图
这里写图片描述

B. What training scale is appropriate?
我们之间用 Faster R-CNN 在 KITTI 数据集上训练测试,训练输入图像尺寸较长的一边为 1000像素, only achieving 64.02% on the moderate car examples while state of the art results reported on the KITTI website are 90.03%

这个差距如何解释了? 主要是降采样太多,车辆特征变小导致检测精度低
我们尝试了不同的训练图像尺寸
这里写图片描述
上图显示随着训练图像尺寸的增加,车辆检测精度是一直提升的。
However we used a training scale of 1500 for most of our analysis below for efficiency consideration.

C. Does the test scale matter?
测试图像的尺寸有没有影响了?
这里写图片描述

D. How many proposals are needed?
这里写图片描述

识别率上不去
这里写图片描述

这里写图片描述

11

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值