神经网络模型结构框架可视化的在线与软件绘图方法

本文介绍了两种新型的神经网络可视化工具:NN-SVG,提供在线定制并下载.svg格式模型;Netron则支持模型参数分析,适合详细查看。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  之前向大家介绍了一种基于Python第三方ann_visualizer模块的神经网络可视化方法,大家可以直接点击博客:基于Python的神经网络模型结构框架可视化绘图简便方法(https://blog.csdn.net/zhebushibiaoshifu/article/details/116212113)查看;这方法可以对Dense隐藏层以及MaxPooling层、Dropout层、Flatten层等其它类型的隐藏层加以绘制,功能非常强大,但是需要用代码执行,且在执行前需要将神经网络的全部结构与输入数据配置好后才可以绘制,稍微有一些繁琐。

  今天,就向大家介绍两种新的神经网络可视化绘图方法,其中,一种是在线绘制,一种是基于软件绘制(其也可以在网页中直接绘制)。

1 NN-SVG

  网址:http://alexlenail.me/NN-SVG/index.html

  NN-SVG是一个在线神经网络结构绘制网页平台,进入后点点鼠标就可以绘制出精美的神经网络图像,且还可以对整幅图像的方向,以及接点、连接线、箭头等等要素的样式、大小、颜色、权重、间隙大小等属性加以调整,可谓非常方便、非常强大。

在这里插入图片描述

  在其最下方,可以对输入层、隐藏层与输出层的数量与神经元个数加以调整。

在这里插入图片描述

  配置完成取得满意的图像后,大家可以点击最上方的“Download SVG”进行图像下载。需要注意,下载图像的格式是.svg,需要我们手动转换为常见的图片格式。具体在线格式转换网站网上有很多,这里就不再叙述了~

  但是,NN-SVG仅仅可以显示简单的隐藏层,并不能对隐藏层的类型加以区分绘制。

2 Netron

  网址:https://github.com/lutzroeder/netron

  Netron是一个对神经网络以及各类机器学习、深度学习算法进行可视化的工具,分为软件版与在线版(在线版网页:https://netron.app/)。绘制时我们需要先建立并保存自己的模型(并且还是要运行之后的,因为其会显示模型中具体参数的变化情况),随后用其打开即可。Netron支持的模型格式如下所示。

在这里插入图片描述

  我们以Windows下其软件版本为例介绍。下载安装包后直接安装。

在这里插入图片描述

  安装完毕后打开软件,如下所示。

在这里插入图片描述

  随后,打开我们保存的模型。

在这里插入图片描述

  即可实现具体模型及其每一个参数变化情况的可视化图像,非常具体、细致。

  个人感觉用Netron进行具体带参数分析的可视化比较方便,如果只是想单纯看一下神经网络的结构的话,用其可能不太方便、不太直观。

欢迎关注CSDN/公众号/知乎/微博:疯狂学习GIS

在这里插入图片描述

### 使用 NNSVG 绘制卷积神经网络架构图 NNSVG 是一个用于绘制神经网络结构图的在线工具,能够帮助研究人员和开发者直观展示模型架构。对于希望创建清晰、专业的卷积神经网络(CNN)图表而言,这是一个非常有用的资源。 #### 访问 NNSVG 工具 为了开始使用 NNSVG 创建 CNN 图表,访问官方网站[^1]。该网站提供了一个简单易用的界面来定义不同类型的层以及它们之间的连接方式。 #### 定义网络层数参数 当涉及到具体绘制 MNIST 数据集上的简单卷积神经网络时,通常会包含以下几个部分: - 输入层:表示输入图像尺寸 (例如 28x28 像素灰度图) - 卷积层:应用多个滤波器提取特征 - 池化层:减少空间维度的同时保留重要信息 - 全连接层:将前面各层输出扁平化并映射到分类标签数量对应的节点数上 这些组件可以通过点击左侧菜单中的相应图标轻松添加至画布中,并设置每一层的具体属性,如过滤器数目、步幅等。 #### 调整样式布局 完成基础框架搭建之后,还可以进一步自定义外观设计。这包括但不限于改变线条颜色、填充色或是字体风格等细节之处。通过这种方式可以使最终得到的结果更加美观且易于理解[^2]。 #### 导出结果 一旦满意所创作出来的CNN架构图,则可以选择将其保存为SVG格式文件以便后续编辑;也可以直接下载PNG/JPEG版本分享给他人查看或嵌入文档报告之中[^3]。 ```cpp // C++ 实现MNIST数据集上的简单卷积神经网络并非本话题重点, // 此处仅作为背景介绍提及。 ```
评论 28
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

疯狂学习GIS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值