特征值与特征向量

特征值与特征向量的概念


一般而言,对于方阵 A A A,存在向量 p ⃗ \vec{p} p 和 系数 λ \lambda λ,满足 A p ⃗ = λ p ⃗ A\vec{p} = \lambda \vec{p} Ap =λp ,且 p ⃗ ≠ 0 ⃗ \vec{p} \neq \vec{0} p ̸=0 ,我们把向量 p ⃗ \vec{p} p 和 系数 λ \lambda λ 称为方阵 A A A 的特征向量 和 特征值。


特征值与特征向量的几何意义


特征向量 p ⃗ \vec{p} p 左乘方阵 A A A 之后,出了长度有伸缩之外,方向不发生变化。长度变化率即为特征值 λ \lambda λ. 特征向量可以理解为方向不变的向量
例如:
A ≡ ( 1 − 0.3 − 0.7 0.6 ) A \equiv\left(\begin{array}{ll} {1} & {-0.3} \\ {-0.7} & {0.6} \end{array}\right) A(10.70.30.6)
存在特征向量 p ⃗ ≡ [ 3 , 7 ] T \vec{p} \equiv {[3, 7]}^T p [3,7]T 和 特征值 λ ≡ 0.3 \lambda \equiv 0.3 λ0.3;


存在没有特征向量的矩阵嘛:复数的特征值与特征向量


如果只考虑实数范围,有些矩阵(发生方向改变的变换)是不存在特征向量和特征值的。例如: A ≡ ( 0 1 − 1 0 ) A \equiv\left(\begin{array}{ll}{0} & {1} \\ {-1} & {0}\end{array}\right) A(0110)。矩阵 A A A 是以 原点为中心,逆时针旋转 90 ° 90° 90° ** 的变换,把向量 [ 1 , 0 ] ⃗ \vec{[1, 0]} [1,0] 映射到 [ 0 , 1 ] ⃗ \vec{[0, 1]} [0,1] ,把向量 [ 0 , 1 ] ⃗ \vec{[0, 1]} [0,1] 映射到 [ − 1 , 0 ] ⃗ \vec{[-1, 0]} [1,0] 的位置。因此所有的向量都发生了 90 ° 90° 90° 的旋转,所以特征向量(方向不变的向量)是无论如何也找不到的。
但是引入
复数**,就会发现:

  • 特征值 + i +i +i 的特征向量为 p ⃗ + = ( i , + 1 ) T \vec{p}_+ = {(i, +1)}^T p +=(i,+1)T;
  • 特征值 − i -i i 的特征向量为 p ⃗ − = ( i , − 1 ) T \vec{p}_- = {(i, -1)}^T p =(i,1)T;

总结,即便是实矩阵,其特征值,特征向量也可能出现复数


特征值与特征向量的性质


λ , p ⃗ \lambda,\vec{p} λp 为方阵 A A A 的特征矩阵和特征向量, α \alpha α 为任意数。

  • 如果 A A A 0 0 0 特征值,等价与 A A A奇异矩阵
  • 1.7 p ⃗ , 0.9 p ⃗ 1.7\vec{p}, 0.9\vec{p} 1.7p ,0.9p 等也是 A A A 的特征向量;一般而言,对于 α ≠ 0 \alpha \neq 0 α̸=0 α p \alpha p αp 也是 A A A 的特征向量;(它们对应的特征值都是 λ \lambda λ);
  • 若对于特征值 λ \lambda λ,另有向量 q q q 也是特征向量,那么 p + q p + q p+q 也是 A A A 的特征向量;(它们对应的特征值都 λ \lambda λ)。这里不包括 p + q = o p+q = o p+q=o 的情况;
  • p p p 也是 1.7 A 、 − 0.9 A 1.7A、-0.9A 1.7A0.9A等的特征向量(对应的特征值分别为 1.7 λ 、 − 0.9 λ 1.7\lambda、-0.9\lambda 1.7λ0.9λ)。一般而言, p p p 也是 α A \alpha A αA 的特征向量(对应特征值为 α λ \alpha \lambda αλ);
  • p p p 也是 A + 1.7 I , A − 0.9 I A + 1.7I, A - 0.9I A+1.7I,A0.9I等的特征向量(对应的特征值分别为 1.7 λ , − 0.9 λ 1.7\lambda,-0.9\lambda 1.7λ0.9λ)。一般而言, p p p 也是 A + α I A + \alpha I A+αI 的特征向量(对应的特征值为 λ + α \lambda + \alpha λ+α);
  • p p p 同样是 A 2 , A 3 A^2,A^3 A2A3 等的特征向量(对应的特征值为 λ 2 , λ 3 {\lambda}^2,{\lambda}^3 λ2λ3)。一般而言,对 k = 1 , 2 , 3 , . . . k = 1, 2, 3, ... k=1,2,3,... p p p 也是 A k A^k Ak 的特征向量(对应的特征值为 λ k {\lambda}^k λk);
  • p p p 也是 A − 1 A^{-1} A1 的特征向量(当 A − 1 A^{-1} A1存在时),对应的特征值为 1 / λ 1/{\lambda} 1/λ
  • 对角矩阵 d i a g 5 , 3 , 8 diag{5, 3, 8} diag5,3,8的特征值为 5 , 3 , 8 5, 3, 8 5,3,8,对应的特征向量为 ( 1 , 0 , 0 ) T 、 ( 0 , 1 , 0 ) T , ( 0 , 0 , 1 ) T (1, 0, 0)^T、(0, 1, 0)^T, (0, 0, 1)^T (1,0,0)T(0,1,0)T,(0,0,1)T。一般而言,对角矩阵 d i a g ( a 1 , a 2 , . . . , a n ) diag(a_1, a_2, ..., a_n) diag(a1,a2,...,an) 的特征值为 a 1 , a 2 , . . . , a n a_1, a_2, ..., a_n a1,a2,...,an,对应的特征向量为: e 1 , e 2 , . . . , e n e_1, e_2, ..., e_n e1,e2,...,en
  • 对于分块矩阵,例如: D = ( A O O O B O O O C ) D=\left(\begin{array}{lll}{A} & {O} & {O} \\ {O} & {B} & {O} \\ {O} & {O} & {C}\end{array}\right) D=AOOOBOOOC,若 p p p A A A 的特征向量(特征值为 λ \lambda λ), q q q B B B 的特征向量(特征值为 u u u), r r r C C C 的特征向量(特征值为 v v v),则 D D D 的特征向量分别为:
    ( p o o ) , ( o q o ) , ( o o r ) \left(\begin{array}{l}{p} \\ {o} \\ {o}\end{array}\right), \quad\left(\begin{array}{l}{o} \\ {q} \\ {o}\end{array}\right), \quad\left(\begin{array}{l}{o} \\ {o} \\ {r}\end{array}\right) poo,oqo,oor
    其对应的特征值分别为: λ 、 u , v \lambda、u, v λu,v。对于分块矩阵,只需依次考虑各个分块的特征值和特征向量即可;
  • 对于上三角矩阵、下三角矩阵,特征值为对角元素;例如,
    A = ( 5 ∗ ∗ 0 3 ∗ 0 0 8 ) A=\left(\begin{array}{lll}{5} & {*} & {*} \\ {0} & {3} & {*} \\ {0} & {0} & {8}\end{array}\right) A=500308
    其特征值为 5 , 3 , 8 5, 3, 8 5,3,8;
  • 对于大小和 A A A 相同的可逆矩阵 S S S S − 1 p S^{-1}p S1p S − 1 A S S^{-1}AS S1AS 的特征向量(对应的特征值为 λ \lambda λ);因此 A A A S − 1 A S S^{-1}AS S1AS 具有相同的特征值–相似变换下的特征值不变;
  • 行列式等于特征值的乘积。也就是说 n x n n x n nxn 的矩阵 A A A 的特征值为: λ 1 , λ 2 , . . . , λ n {\lambda}_1, {\lambda}_2, ..., {\lambda}_n λ1,λ2,...,λn时,有 d e t A = λ 1 λ 2 . . . λ n detA = {\lambda}_1 {\lambda}_2 ... {\lambda}_n detA=λ1λ2...λn。理由如下:
    det ⁡ ( P − 1 A P ) = det ⁡ ( P − 1 ) det ⁡ A det ⁡ P = 1 det ⁡ P det ⁡ A det ⁡ P = det ⁡ A \operatorname{det}\left(P^{-1} A P\right)=\operatorname{det}\left(P^{-1}\right) \operatorname{det} A \operatorname{det} P=\frac{1}{\operatorname{det} P} \operatorname{det} A \operatorname{det} P=\operatorname{det} A det(P1AP)=det(P1)detAdetP=detP1detAdetP=detA
    另一方面,有:
    det ⁡ ( P − 1 A P ) = det ⁡ Λ = λ 1 ⋯ λ n \operatorname{det}\left(P^{-1} A P\right)=\operatorname{det} \Lambda=\lambda_{1} \cdots \lambda_{n} det(P1AP)=detΛ=λ1λn
    从几何的角度来讲,如果可以巧妙的选取基向量, A A A 对应的映射就可以表示为单纯的沿着坐标轴进行伸缩变换。由于各轴的伸缩比率正是特征值 λ 1 , λ 2 , . . . , λ n {\lambda}_1,{\lambda}_2,...,{\lambda}_n λ1λ2...λn行列式为空间扩大率
  • 不相等的特征值对应的特征向量线性无关;
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值