测试几个LTspice 模型的精度

简 介: 本文对于 LTspice 仿真软件中的典型器件进行测试。反过来测试期间的基本特性。

关键词 LTspice

LTspice模型
目 录
Contents
温度模型
三极管反向模型
结型场效应管
总 结

 

§01 LTspice模型


一、温度模型

1、二极管温度

  利用如下电路,测量温度对于二极管端口电压的影响。

▲ 图1.1.1 建立二极管的电压

▲ 图1.1.1 建立二极管的电压

  下面是 LTspice 软件给出的仿真数据。 根据:

d v d t = max ⁡ ( V ) − min ⁡ ( V ) max ⁡ ( T ) − min ⁡ ( T ) = 1.771    ( V / C ) {{dv} \over {dt}} = {{\max \left( V \right) - \min \left( V \right)} \over {\max \left( T \right) - \min \left( T \right)}} = 1.771\,\,\left( {V/C} \right) dtdv=max(T)min(T)max(V)min(V)=1.771(V/C)

▲ 温度变化对于二极管的输出电压的影响

▲ 温度变化对于二极管的输出电压的影响

  这个数值接近于 PN 结温度特性 也就是温度每升高 1 ℃, PN 结电压减少 2mV 左右。

  在 Accurate Temperature Sensing with an External P-N Junction 中给出了 三极管 B-E 之间的 P-N 结电压、电流与温度之间的关系。

I C = I S ( e V B E n ⋅ V T − 1 ) I_C = I_S \left( {e^{{{V_{BE} } \over {n \cdot V_T }}} - 1} \right) IC=IS(enVTVBE1)

  其中 V T = k T / q V_T = kT/q VT=kT/q 。所以: V B E = n ⋅ k T q ln ⁡ ( I C I S ) V_{BE} = n \cdot {{kT} \over q}\ln \left( {{{I_C } \over {I_S }}} \right) VBE=nqkTln(ISIC) 反过来可以得到: T = q ⋅ V B E n k ⋅ ln ⁡ ( I C / I s ) T = q \cdot {{V_{BE} } \over {nk \cdot \ln \left( {I_C /I_s } \right)}} T=qnkln(IC/Is)VBE

  可以看到,在 I C I_C IC 一定的情况下, 温度与 P-N 结之间是正比的关系。这说明对于普通的二极管来将,端口电压随着温度的升高而下降是由于 温度对于 Is具有更大的影响。

  下面测试了二极管反向导通电流 I s I_s Is 随着温度的变化。

▲ 图1.1.3 反过来,测量二极管的反向导通电流随着温度的变化

▲ 图1.1.3 反过来,测量二极管的反向导通电流随着温度的变化

  仿真结果给出了 二极管的模型中的反相电流对着温度增加而指数增加的情况。 从这一点来说,二极管的 P-N 的电压与温度之间的关系主要受到了 反向电流 I s I_s Is 的影响。

▲ 反向流过二极管的饱和电流随着温度的变化

▲ 反向流过二极管的饱和电流随着温度的变化

下面是测试的 2N3904 的 BE 的 NP结的温度特性。

▲ 三极管BE PN结温度特性

▲ 三极管BE PN结温度特性

二、三极管反向模型

  PN结中的玻尔兹曼常数 可以使用 三极管中的 B-E 之间的 P-N 节来进行测量 。下图给出了测量的电路。

▲ 图1.2.1 测量三极管的VBE的电压与电流之间的关系

▲ 图1.2.1 测量三极管的VBE的电压与电流之间的关系

  设置输入电压 V1 的变化 从 0 变化到 -2V,输出电压 V(out) 反映了 Q1 集电极的电流,在一定比例下它等于 BE 之间的 P-N 结之间的电流。如下图所示。

▲ 上述测量电路的电压测试波形

▲ 上述测量电路的电压测试波形

  将 Vout 换算成 电流,再与 Vbe 绘制在同一张图上。

▲ 图1.2.3 三极管B-E之间的P-N结的电压电流之间的关系

▲ 图1.2.3 三极管B-E之间的P-N结的电压电流之间的关系

  将 Ibe 取 对数,然后再绘制对应的曲线。如下图所示, 可以看到当电压超过 0.3V 之后, PN结的电流的对数值与电压之间就呈现线性关系。这也反过来验证了 PN 届 之间的 电压电流公式。

▲ 取 LOG 之后的PN结电流与电压之间的关系

▲ 取 LOG 之后的PN结电流与电压之间的关系

  通过这个模型,可以看到 LTspice 模型与实际三极管的特性还是很接近的。

三、结型场效应管

  下面测试结型场效应管的饱和电流与栅极电压之间的关系。

▲ 图1.3.1 测试电路

▲ 图1.3.1 测试电路

  如下是仿真结果,大体可以看到, 2N3819的截止电压大约为 -3V 左右。而且电流与栅极电压之间大体上呈现 平方关系。

▲ 结型场效应管电压与电流

▲ 结型场效应管电压与电流

 

  结 ※


  本文对于 LTspice 仿真软件中的典型器件进行测试。反过来测试期间的基本特性。


■ 相关文献链接:

● 相关图表链接:

### 设计LTspice中的滤波器电路 #### 工具概述 LTspice 是一种强大的 SPICE 模拟工具,广泛用于电子电路设计和仿真。它支持多种类型的滤波器设计,包括低通、高通、带通和带阻滤波器。通过频率分析功能,可以生成 Bode 图来评估滤波器性能[^1]。 #### 基本流程 在 LTspice 中实现滤波器的功能通常涉及以下几个方面: 1. **创建基本电路模型** 使用标准元件库构建所需的滤波器拓扑结构。例如,RC、RLC 组合可用于简单的一阶或二阶滤波器。 2. **设置交流扫描参数** 配置 `.ac` 语句定义频率范围和步长。这一步对于观察滤波器的幅频特性至关重要。语法如下: ```plaintext .ac dec 10 1Hz 10MegHz ``` 上述命令表示以每十倍频程十个点的方式,在 1 Hz 到 10 MHz 的范围内进行扫频分析。 3. **考虑实际效应** 将寄生电感、电阻等因素纳入仿真中可提高预测精度。这些非理想因素可能显著影响高频下的表现。 4. **利用Bode Plot查看响应曲线** 完成上述配置之后运行仿真,随后可以从菜单栏选择“Spice Error Log”,再点击弹出窗口里的“View” -> “SPICE Netlist”。接着切换到图形界面即可看到增益与相位随频率变化的趋势图线。 #### 示例代码展示 下面给出了一款简单的 RC 低通滤波器的例子及其对应的 AC 分析指令集: ```netlist * Simple Low Pass Filter Example in LTspice Vinput input 0 DC 0 AC 1 R1 input output 1k C1 output 0 1uF .ac dec 5 1 1e6 .model default Rser=0 Cpar=0 Lser=0 Temp=27 Trise=0 Tfall=0 Voff=0 Von=0 Isat=0 Rsat=inf M=1 Kf=0 Af=1 Fc=0 Rd=0 Cd=0 Cbd=0 Crss=0 Cjsw=0 Pb=0 Xti=3 Eg=1.11 Tt=0 Ta=27 Phi=0 N=1 Ipk=0 Ar=0 Br=0 Is=0 Nr=2 Mr=0 Js=0 Pd=0 Pt=0 Ps=0 As=0 Bs=0 Cs=0 Ds=0 Es=0 Fs=0 Gs=0 Hs=0 Jp=0 Kp=0 Lp=0 Mp=0 Np=0 Op=0 Pp=0 Qp=0 Rp=0 Sp=0 Tp=0 Up=0 Vp=0 Wp=0 Xp=0 Yp=0 Zp=0 ``` 此脚本描述了一个由单个电阻 (R1) 和电容器 (C1) 构建而成的基础型一阶 LPF 并对其进行了从直流至兆赫兹级数跨度内的全面扫描测试过程。 #### 提升技巧 为了进一步优化您的设计体验,请尝试以下建议: - 探索不同种类组件(比如运算放大器)加入主动式架构当中; - 运用子电路宏定义重复使用的复杂模块简化整体布局管理难度; - 学习如何解读噪声密度直方统计图表数据从而改进信噪比指标等等高级主题领域知识扩展学习方向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卓晴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值