低通与高通滤波器串联

反直觉的带通滤波器

简 介: 本文探讨了低通滤波器与高通滤波器串联的情况。通过LTspice仿真,发现无论低通滤波器的截止频率是否高于高通滤波器,串联后的滤波器均呈现带通特性,且相频特性单调下降。这一结果与直觉相悖,表明滤波器的串联行为并不完全依赖于截止频率的高低顺序。仿真结果显示,虽然两种配置下的幅频特性形状相同,但通带增益在低通截止频率低于高通时下降了20dB。这一发现对滤波器设计具有重要参考价值。

关键词 低通滤波器带通滤波器高通滤波器串联

 

01 波器串联


一、滤波器串联

  一个阻容低通滤波器,  和一个阻容高通滤波器,  通过电压跟随串联在一起。   这样就构成了 一个带通滤波器。 在直觉上,  低通滤波器所对应的截止频率, 应该大于高通滤波器对应的截止频率。 这样就组成了一个正常的带通滤波器。  如果反过来, 低通滤波器的截止频率小于高通滤波器对应的截止频率。  那么串联在一起对应的频率特性是什么呢?  从直觉上, 前面的低通滤波器的截止频率如果 小于高通滤波器的截止频率。 对应的系统应该是一个 不通 滤波器。  但是, 如果说, 这两个滤波器串联后的频率特性依然是一个相同的带通滤波器,  这是不是有点出乎我们的意外? 下面通过LTspice 进行仿真测试一下。

G12M1747667992_1920_1080.MP4|_-12

二、低通串联高通

  在 LTspice中搭建仿真电路, 使用可控电压源将前面的一阶低通滤波器和后面的一阶高通滤波器串联在一起。  高通滤波器的截止频率是由R1,C1决定,  可以计算出对应的截止频率 大约为 1592Hz。  低通滤波器的截止频率是由 R2,C2 决定。  计算截止频率 等于 15.92kHz 。  这种配置是符合直觉的, 也就是低通截止频率大于高通截止频率, 所以对应的带通滤波器的通带频率,  从 1.592kHz 到 15.92kHz。

G9M1747666369_1920_1080.MP4|_-9
  根据 LTspice的仿真结果,  在幅频特性图中 ,  以 -3dB为标准,  可以看到通带频率从 1.568Hz 到 15.972kHz。 这与前面理论计算结果是相符合的。

G4M1747666588_1920_1080.MP4|_-4

  现在更换低通和高通滤波器的RC参数。  将低通滤波器的电阻增加到 10k欧姆,  将高通滤波器的电阻减小到 1k欧姆。  相当于交换高通和低通对应的时间常数。  由此可以看到,  低通滤波的截止频率小于高通滤波器的截止频率。 下面查看一下对应的仿真结果。  令人感到惊讶的是, 居然对应的幅频特性和相频特性整体上与高通和低通滤波器交换之前是一样的。 唯一的不同,  那就是这种反直觉滤波器的通带内的增益, 下降到了 -21dB, 比起刚才符合直觉的滤波器通带内的增益小了 20dB。

G8M1747666924_1920_1080.MP4|_-8

三、对比结果

  将前面两个仿真结果绘制在一起,  可以看到两种结果对应的相频特性是一模一样的。  对应的幅频特性从形状上来讲也是一样的。 只是, 上面对应的是低通滤波器的截止频率高于高通滤波器的截止频率。  下面幅频特性恰好将低通滤波器的截止频率 与高通滤波器的截止频率交换了。 交换之后, 滤波器的幅频特性整体上下降了 20dB。
G5M1747667267_1920_1080.MP4|_-5

▲ 图1.2.1 对比两种参数下的带通滤波器的频率特性

▲ 图1.2.1 对比两种参数下的带通滤波器的频率特性

#!/usr/local/bin/python
# -*- coding: gbk -*-
#============================================================
# TEST1.PY                     -- by Dr. ZhuoQing 2025-05-19
#
# Note:
#============================================================

from headm import *

gain0, ang0 = tspload('aa', 'gain', 'ang')
gain1, ang1 = tspload('bb', 'gain', 'ang')



plt.semilogx(gain0[0], gain0[1], lw=3, label='Filter1')
plt.semilogx(gain1[0], gain1[1], lw=3, label='Filter2')

plt.xlabel("Frequency(Hz)", color="steelblue", fontsize=16)
plt.ylabel("Gain(dB)", color="steelblue", fontsize=16)
plt.grid(True)
plt.tight_layout()

plt.legend(loc='upper right', fontsize=16)


ax1 = plt.twinx()
ax1.semilogx(gain0[0], ang0[1], "r", lw=2, label="Angle1")
ax1.semilogx(gain1[0], ang1[1], "r", lw=2, label="Angle2")
ax1.set_ylabel("Angle", color="steelblue", fontsize=16)
#ax1.legend(loc="lower right", fontsize=24)
plt.tight_layout()

plt.show()





#------------------------------------------------------------
#        END OF FILE : TEST1.PY
#============================================================

 

  结 ※


  文讨论了一个低通滤波器 与高通滤波器串联的情况。  只要两个滤波器的截止频率不同。 无论是低通滤波器和高通滤波器的截止频率, 谁高谁低。 串联后滤波器的幅频特性的形状都是带通滤波器的特性。  相频特性都是单调下降的。  这一点, 的确出乎我们的直觉猜测。

G5M1747667446_1920_1080.MP4|_-5


● 相关图表链接:

### 高通滤波器低通滤波器串联实现带带阻滤波器 #### 带滤波器的工作原理 当高通滤波器低通滤波器以适当的方式连接时,可以形成带滤波器。具体来说,在这种配置下,输入信号先经过高通滤波器,该部分会阻止于设定截止频率的信号过;随后,剩余的高频信号再进入低通滤波器,后者则进一步阻挡高于其自身截止频率的部分[^2]。 对于理想的带滤波器而言,只有位于两个滤波器之间频段内的信号能够顺利传输,而其余频率成分要么被前者削减要么被后者抑制。这样的设计使得特定范围内的交流电信号得以保留并放大,同时排除掉不需要的噪声或其他干扰源。 ```matlab % MATLAB代码示例:创建一个简单的RC带滤波器模型 fs = 10e3; % Sampling frequency (Hz) fc_low = 500; % Low-pass filter cutoff frequency (Hz) fc_high = 2000; % High-pass filter cutoff frequency (Hz) [b,a] = butter(2, [fc_low/(fs/2), fc_high/(fs/2)], 'bandpass'); freqz(b, a); title('Frequency Response of Band Pass Filter') ``` #### 带阻滤波器的工作原理 不同于上述方法构建带特性,为了得到带阻效果,则需采用不同的策略——即让高路径分别独立运作之后再将其结果相加起来。这意味着原始音频流会被分成两路处理: - **一路**经由高通装置过滤后直接输出; - 另外**一路**则是透过组件转换后再馈入同一终点处混合在一起。 最终合成出来的波形里头那些处于中间区域(介于两者转折点之间的那部分)的能量就会显得相对较弱甚至消失不见,因为这部分正好对应着各自单独作用下的盲区位置[^1]。 值得注意的是,实际应用中可能还需要考虑诸如相位差等因素的影响,以及选择合适的元件参数来确保最佳性能表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卓晴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值