强化学习曾小健
"强化学习曾小健2、强化学习曾小健3、我是机器人曾小健具身"都是该号副号。CSDN全站80强博客、总近480w+浏览。AI生成式技术,计算机博士;llama3、Baichuan2、Qwen、GLM-4等等项目贡献人(ArtificialZeng)。这个博客的主题主要是强化学习技术、AI生成式技术、大模型多模态技术、机器人具身智能控制技术、机器/深度学习论文或科研前沿、GNN图神经网络、神经网络,包括人工神经网络和生物神经网络,及其大脑演化,智能和认知的产生,通用人工智能;
展开
-
llama3地位不保?谷歌Gemma2 27B开源,预训练13T tokens!
27B 分数非常接近。对于GPU VRAM 较低的场景来说,27B 可能是 70B 的一个很好的替代品。欢迎多多关注,加入交流群,交个朋友吧,一起学习,一起进步!27b 在聊天机器人领域优于 llama 3 70B。模型是在包含多种来源的文本数据集上进行训练的。全局注意力层的跨度设置为 8192 个标记。27B 模型使用 13T 的tokens。刚刚瞄了一眼,权重真开源了!8T 的tokens进行训练。进行训练,9B 模型使用。,技术报告中写的是:我们。的 27B 分数稍低。是我坚持的最大动力!原创 2024-07-06 15:01:40 · 1095 阅读 · 0 评论 -
BM42横空出世!BM25统御搜索引擎40年,终于要落幕了?
BM42, 在金融、生物医学和维基百科领域的更好数据集上重新运行,遗憾的是 BM42 在所有方面都表现不佳。precision@10 结果显然是错误的,声称每 10 个query中有4个候选。最新的修正后的代码。算是最新的大瓜了,早上刷到了很多帖子。天气太热,吃瓜消遣一下~Qdrant最新的公关回复,对结果进行了修正,并推送了。在他们的帖子中,提到:BM25已经统治了搜索引。擎40年了,但是BM25在最新的RAG应用场景。搜索的问题,声称在各个场景都有优势,如下图。对Qdrant不熟悉的小伙伴,提一点,原创 2024-07-06 14:57:31 · 629 阅读 · 0 评论 -
search4all、Morphic:Perplexity的开源版本 开源RAG
Morphic 代表了 AI 搜索引擎的未来方向。它融合了多种尖端技术,为用户带来前所未有的智能化、个性化搜索体验。无论是寻求精确答案还是发现新见解,Morphic 都将是不二之选。对于开发者来说,这也是一个绝佳的学习机会,了解 AI 和现代 Web 开发的最新进展。期待 Morphic 能为搜索领域带来革命性的变革,推动 AI 技术在更多场景中的应用。让我们拭目以待这一创新项目的未来发展!想要发现更多免费好用的AI工具,关注本公众号,点击底部“AI 导航站”,获取导航链接!原创 2024-06-28 14:42:58 · 1029 阅读 · 0 评论 -
m3e是一种文本嵌入模型
m3e是一种文本嵌入模型,可以将自然语言转换成稠密向量表示。它支持同质文本相似度计算和异质文本检索等功能。原创 2024-05-29 22:39:09 · 1580 阅读 · 0 评论 -
字节CV搜索提前批面试题7道|含解析
在“decode only”模型中,计算过程是单向的,即从输入到输出逐步生成,这种方式可以更高效地利用计算资源。建堆的过程:可以从一个无序的数组开始,并将其转化为一个最大堆(父节点的值大于子节点)或最小堆(父节点的值小于子节点)。综上所述,虽然“decode only”模型并不是在所有情况下都是最优选择,但在许多生成任务和实际应用中,它们确实展示了很大的优势,因此被广泛采用。:由于“decode only”模型只需逐步生成,不需要存储大量的中间状态,这对内存和存储的使用更加友好,尤其是在处理长文本时。原创 2024-05-26 22:47:24 · 870 阅读 · 0 评论 -
从RAG到GraphRAG的应用落地揭秘
RAG(检索增强生成)是什么?正如提到的那样,它是一种技术,可以“良好”地解释用户的查询,检索“相关”信息,将其处理为上下文,然后将此有用信息融入回复中。正如引用的网站所指出的,RAG以其成本效益、相对准确性、提供领域特定语境的充足性、反映最新信息的能力以及追踪信息来源文档的透明度和可解释性等特点而被认为是一种主要选择的方法。原创 2024-05-21 16:45:21 · 1875 阅读 · 0 评论 -
基于结构化数据的文档问答
等等。我在这篇笔记中介绍了文档问答的基本原理,通过 OpenAI 的 Embedding 接口实现了一个最简单的本地知识库助手,并在这篇笔记中通过 LangChain 的再次实现了基于文档的问答,还介绍了四种处理大文档的方法(StuffRefineMapReduce和MapRerank。原创 2024-05-07 22:51:16 · 875 阅读 · 0 评论 -
RAG系列04:使用ReRank进行重排序
如上图所示,重排任务就像一个智能过滤器。当检索器从索引库中检索到多个上下文时,这些上下文与用户查询的相关性各不相同。有些可能非常相关(如图中红框所示),而另一些可能只是轻微相关甚至不相关(如图中的绿框和蓝框所示)。重排的任务就是评估这些上下文的相关性,优先考虑那些最有可能提供准确和相关信息的内容。这样,LLM 在生成答案时可以优先考虑这些排名靠前的上下文,从而提高回应的准确性和质量。换句话说,重排就像在开卷考试中,帮你从一堆学习资料中挑选出最相关的参考资料,以便你能更高效、更准确地回答问题。原创 2024-05-06 13:52:39 · 2284 阅读 · 0 评论 -
500行代码打造AI搜索引擎!贾扬清周末项目登顶GitHub热榜
贾扬清也做出回应,称无意进入这个市场,更多的是Demo展示以及宣传自家LeptonAI云服务,并且一开始就准备开源。正如Perplexity的CEO所说,他们的产品大获成功后,其模式已成为事实上的行业标准。Lepton Search之所以500行代码就能实现,正如贾扬清想要展示的,是因为今天的。目前,已有偏学术的开源AI搜索引擎SciPhi使用贾扬清的代码完成升级。独立APP版,安卓版刚刚上线还是热乎的,连评分数量都还没够展示门槛。,刚刚拿到7360万美元的A轮融资,估值超过5亿美元。原创 2024-05-06 11:03:34 · 745 阅读 · 0 评论 -
微软多部门联合推出GraphRAG项目:全面性和多样性方面显著优于原生大模型RAG
传统的RAG方法适用于局部文本检索任务,但。原创 2024-04-26 15:05:38 · 2487 阅读 · 0 评论 -
RAG应用的典型工作流程
在总结中,我们看到了 RAG(检索增强生成)系统的快速进步,这包括了能够定制并推动 RAG 在多个领域性能和实用性进一步提高的先进范式的开发。例如,通过适应性增强检索技术(AAR(opens in a new tab)),REPLUG(opens in a new tab),和UPRISE(opens in a new tab)等方式来实现。这些工具和服务的开发,不仅推动了 RAG 技术的应用范围扩展,也为研究人员和开发者提供了更多的可能性,使他们能够更容易地探索和实现复杂的 RAG 应用。原创 2024-04-19 18:26:03 · 1323 阅读 · 0 评论 -
【大模型】「RAG,Retrieval-Augmented Generation」检索增强生成-全流程
检索增强生成(Retrieval Augmented Generation),简称 RAG,已经成为当前最火热的LLM应用方案。它是一个为大模型提供外部知识源的概念,这使它们能够生成准确且符合上下文的答案,同时能够减少模型幻觉。原创 2024-04-19 18:18:37 · 3073 阅读 · 0 评论 -
改进召回(Retrieval)和引入重排(Reranking)提升RAG架构下的LLM应用效果
RAG架构来自于实际问题,而很多问题都是相似的,在效果优化层面,我们可以借鉴一些推荐系统等传统AI系统的优化经验,将其迁移过来,这对于改进RAG效果有很大的帮助,在后面的文章里,还将继续介绍具体场景的一些使用问题,欢迎关注。原创 2023-09-21 21:06:08 · 10878 阅读 · 0 评论 -
LLM应用架构之检索增强(RAG,retrieval-augmented generation)的缘起与架构介绍
原创 ullyAI工程化收录于合集#领域技术13个#LLM应用架构3个动手点关注本文是LLM应用架构系列的第一篇,将介绍LLM应用开发里最常见的一种架构模式RAG( Retrieval Augmented Generation),它被广泛应用于知识问答,智能助手等常见LLM应用场景中。在后续文章中还将介绍该模式落地实际过程中的一些常见问题及改进思路,欢迎关注“AI工程化”,持续为大家更新。原创 2023-09-21 20:58:00 · 6067 阅读 · 0 评论 -
IncarnaMind:支持多文档对话式聊天
IncarnaMind 使您能够使用 GPT(架构概述)等大型语言模型 (LLM) 与您的个人文档(PDF、TXT)进行聊天。虽然 OpenAI 最近推出了针对 GPT 模型的微调 API,但它无法让基础预训练模型学习新数据,而且响应可能容易产生事实幻觉。利用我们的滑动窗口分块机制和 Emsemble Retriever,可以高效查询地面实况文档中的细粒度和粗粒度信息,以增强 LLM。由 Langchain 和 Chroma DB提供支持。原创 2023-09-18 21:17:38 · 324 阅读 · 0 评论 -
M3E Models Langchain召回模型 hf官方页面
M3E 是的缩写。原创 2023-08-21 17:02:56 · 1286 阅读 · 0 评论 -
kitlm: 领域知识融入语言模型,1.5倍的性能改善,开源源代码
本文研究背景是关于大型语言模型(LLMs)面临的计算成本过高和缺乏特定领域理解的问题。过去的方法存在计算成本高和缺乏领域特定理解等问题,本文的方法很好地解决了这些问题。本文提出了一种知识库集成方法,通过相关信息的注入将领域特定知识融入语言模型中。该方法在MetaQA上超越了和最先进的知识注入方法SKILL,在精确匹配得分上取得了超过1.5倍的性能改善。KITLM在航空领域的AeroQA上也表现出类似的性能提升。这些方法的性能支持了他们的目标。原创 2023-08-15 13:32:55 · 282 阅读 · 0 评论 -
将大模型应用于知识检索技术架构
基本上,用户的问题的缺乏某些相关信息模式,这些信息模式将显示一个有意义的答案。一种建议的方法是使用“假想文档嵌入”(Hypothetical Document Embeddings)来生成一个假想的上下文文档,该文档可能包含虚假的细节,但模仿了一个真实的答案。这种方法使语言模型更倾向于返回更具多样性的假想上下文文档建议,这(在嵌入后)从数据存储中返回更多变的结果,并导致完成包括准确答案的机会更高。例如,如果您的应用程序是为正在参加美国MLE的医学生的学习辅助工具,则需要提供跨多个学科的培训示例的完整模型。原创 2023-08-15 13:20:22 · 949 阅读 · 0 评论 -
大模型(LLM) + 上下文检索增强
本次分享了一种检索增强+大模型的融合解码策略,该方法简单有效;当然也存在缺陷,就是提高了推理成本;另外检索只用了生成序列的信息,并没有利用上原始query的信息,二者融合,可能也是一个提升思路。原创 2023-08-15 11:18:46 · 773 阅读 · 0 评论 -
结合符号性记忆,清华等提出ChatDB,提升大模型的复杂推理能力
的操作。这些都是引入符号性记忆模块所带来的优势。符号性记忆模块还可以跟之前的记忆模块同时使用,起到相辅相成的作用。之前的一些大语言模型和数据库结合的工作(比如DB-GPT和ChatExcel)也涉及用大语言模型生成 SQL 或 Excel 的指令,但 ChatDB 跟它们有本质上的不同。DB-GPT 和 ChatExcel 更多关注利用大语言模型解决自然语言到 SQL 或 Excel 指令的转化,而且更多只是用来解决查询的问题,数据源本身是给定好的。原创 2023-08-14 10:00:53 · 156 阅读 · 0 评论 -
第一部分 什么是LangChain:LLM的外挂/功能库
DB-GPT基于FastChat 构建大模型运行环境,并提供 vicuna 作为基础的大语言模型。此外,通过LangChain提供私域知识库问答能力,且有统一的数据向量化存储与索引:提供一种统一的方式来存储和索引各种数据类型,同时支持插件模式,在设计上原生支持Auto-GPT插件,具备以下功能或能力根据自然语言对话生成分析图表、生成SQL与数据库元数据信息进行对话, 生成准确SQL语句与数据对话, 直接查看执行结果。原创 2023-08-14 09:49:25 · 2604 阅读 · 0 评论