一文搞懂交叉熵在机器学习中的使用,透彻理解交叉熵背后的直觉

作者:史丹利复合田
来源:CSDN
原文:https://blog.csdn.net/tsyccnh/article/details/79163834
版权声明:本文为博主原创文章,转载请附上博文链接!


关于交叉熵在loss函数中使用的理解

交叉熵(cross entropy)是深度学习中常用的一个概念,一般用来求目标与预测值之间的差距。以前做一些分类问题的时候,没有过多的注意,直接调用现成的库,用起来也比较方便。最近开始研究起对抗生成网络(GANs),用到了交叉熵,发现自己对交叉熵的理解有些模糊,不够深入。遂花了几天的时间从头梳理了一下相关知识点,才算透彻的理解了,特地记录下来,以便日后查阅。

信息论

交叉熵是信息论中的一个概念,要想了解交叉熵的本质,需要先从最基本的概念讲起。

1 信息量

首先是信息量。假设我们听到了两件事,分别如下:
事件A:巴西队进入了2018世界杯决赛圈。
事件B:中国队进入了2018世界杯决赛圈。
仅凭直觉来说,显而易见事件B的信息量比事件A的信息量要大。究其原因,是因为事件A发生的概率很大,事件B发生的概率很小。所以当越不可能的事件发生了,我们获取到的信息量就越大。越可能发生的事件发生了,我们获取到的信息量就越小。那么信息量应该和事件发生的概率有关。

假设XX是一个离散型随机变量,其取值集合为χχ,概率分布函数p(x)=Pr(X=x),x∈χp(x)=Pr(X=x),x∈χ,则定义事件X=x0X=x0的信息量为:
I ( x 0 ) = − l o g ( p ( x 0 ) ) I(x_0)=−log(p(x_0)) I(x0)=log(p(x0))

由于是概率所以 p ( x 0 ) p(x_0) p(x0)的取值范围是[0,1],绘制为图形如下:
                          在这里插入图片描述

可见该函数符合我们对信息量的直觉

2 熵

考虑另一个问题,对于某个事件,有n种可能性,每一种可能性都有一个概率 p ( x i ) p(x_i) p(xi)
这样就可以计算出某一种可能性的信息量。举一个例子,假设你拿出了你的电脑,按下开关,会有三种可能性,下表列出了每一种可能的概率及其对应的信息量
在这里插入图片描述
注:文中的对数均为自然对数

我们现在有了信息量的定义,而熵用来表示所有信息量的期望,即:
H ( X ) = − ∑ i = 1 n p ( x i ) l o g ( p ( x i ) ) H(X)=−∑_{i=1}^n p(x_i)log(p(x_i)) H(X)=i=1np(xi)log(p(xi))

其中n代表所有的n种可能性,所以上面的问题结果就是
H ( X ) = − [ p ( A ) l o g ( p ( A ) ) + p ( B ) l o g ( p ( B ) ) + p ( C ) ) l o g ( p ( C ) ) ] = 0.7 × 0.36 + 0.2 × 1.61 + 0.1 × 2.30 = 0.804 H(X)=−[p(A)log(p(A))+p(B)log(p(B))+p(C))log(p(C))] =0.7×0.36+0.2×1.61+0.1×2.30=0.804 H(X)=[p(A)log(p(A))+p(B)log(p(B))+p(C))log(p(C))]=0.7×0.36+0.2×1.61+0.1×2.30=0.804
然而有一类比较特殊的问题,比如投掷硬币只有两种可能,字朝上或花朝上。买彩票只有两种可能,中奖或不中奖。我们称之为0-1分布问题(二项分布的特例),对于这类问题,熵的计算方法可以简化为如下算式:
H ( X ) = − ∑ i = 1 n p ( x i ) l o g ( p ( x i ) ) = − p ( x ) l o g ( p ( x ) ) − ( 1 − p ( x ) ) l o g ( 1 − p ( x ) ) H(X)=−∑_{i=1}^n p(x_i)log(p(x_i))=−p(x)log(p(x))−(1−p(x))log(1−p(x)) H(X)=i=1np(xi)log(p(xi))=p(x)log(p(x))(1p(x))log(1p(x))

3 相对熵(KL散度)

相对熵又称KL散度,如果我们对于同一个随机变量 x 有两个单独的概率分布 P(x) 和 Q(x),我们可以使用 KL 散度(Kullback-Leibler (KL) divergence)来衡量这两个分布的差异

维基百科对相对熵的定义

In the context of machine learning, DKL(P‖Q) is often called the information gain achieved if P is used instead of Q.

即如果用P来描述目标问题,而不是用Q来描述目标问题,得到的信息增量。

在机器学习中,P往往用来表示样本的真实分布,比如[1,0,0]表示当前样本属于第一类。Q用来表示模型所预测的分布,比如[0.7,0.2,0.1]
直观的理解就是如果用P来描述样本,那么就非常完美。而用Q来描述样本,虽然可以大致描述,但是不是那么的完美,信息量不足,需要额外的一些“信息增量”才能达到和P一样完美的描述。如果我们的Q通过反复训练,也能完美的描述样本,那么就不再需要额外的“信息增量”,Q等价于P。

KL散度的计算公式:
D K L ( p ∣ ∣ q ) = ∑ i = 1 n p ( x i ) l o g ( p ( x i ) q ( x i ) ) D_{KL}(p||q)=∑_{i=1}^n p(x_i)log(\frac{p(x_i)}{q(x_i)}) DKL(pq)=i=1np(xi)log(q(xi)p(xi))
n为事件的所有可能性。
D K L D_{KL} DKL的值越小,表示q分布和p分布越接近

4 交叉熵

对上式变形可以得到:
D K L ( p ∣ ∣ q ) = ∑ i = 1 n p ( x i ) l o g ( p ( x i ) ) − ∑ i = 1 n p ( x i ) l o g ( q ( x i ) ) = − H ( p ( x ) ) − ∑ i = 1 n p ( x i ) l o g ( q ( x i ) ) D_{KL}(p||q)=∑_{i=1}^n p(x_i)log(p(x_i))−∑_{i=1}^n p(x_i)log(q(x_i))=−H(p(x))−∑_{i=1}^n p(x_i)log(q(x_i)) DKL(pq)=i=1np(xi)log(p(xi))i=1np(xi)log(q(xi))=H(p(x))i=1np(xi)log(q(xi))
等式的前一部分恰巧就是p的熵,等式的后一部分,就是交叉熵:
H ( p , q ) = − ∑ i = 1 n p ( x i ) l o g ( q ( x i ) ) H(p,q)=−∑_{i=1}^n p(x_i)log(q(x_i)) H(p,q)=i=1np(xi)log(q(xi))
在机器学习中,我们需要评估label和predicts之间的差距,使用KL散度刚刚好,即 D K L ( y ∣ ∣ y ^ ) D_{KL}(y||ŷ ) DKL(yy^),由于KL散度中的前一部分 − H ( y ) −H(y) H(y)不变,故在优化过程中,只需要关注交叉熵就可以了。所以一般在机器学习中直接用用交叉熵做loss,评估模型。

机器学习中交叉熵的应用

1 为什么要用交叉熵做loss函数?

在线性回归问题中,常常使用MSE(Mean Squared Error)作为loss函数,比如:
l o s s = 1 2 m ∑ i = 1 m ( y i − y i ′ ) 2 loss=\frac{1}{2m}∑_{i=1}^m (y_i−y_i')^2 loss=2m1i=1m(yiyi)2
这里的m表示m个样本的,loss为m个样本的loss均值。
MSE在线性回归问题中比较好用,那么在逻辑分类问题中还是如此么?

2 交叉熵在单分类问题中的使用

这里的单类别是指,每一张图像样本只能有一个类别,比如只能是狗或只能是猫。
交叉熵在单分类问题上基本是标配的方法
l o s s = − ∑ i = 1 n y i l o g ( y i ′ ) loss=−∑_{i=1}^n y_i log(y_i') loss=i=1nyilog(yi)
上式为一张样本的loss计算方法。上式中n代表着n种类别。
举例说明,比如有如下样本
对应的标签和预测值
在这里插入图片描述
那么
l o s s = − ( 0 × l o g ( 0.3 ) + 1 × l o g ( 0.6 ) + 0 × l o g ( 0.1 ) = − l o g ( 0.6 ) loss=−(0×log(0.3)+1×log(0.6)+0×log(0.1)=−log(0.6) loss=(0×log(0.3)+1×log(0.6)+0×log(0.1)=log(0.6)
对应一个batch的loss就是
l o s s = − 1 m ∑ j = 1 ∑ i = 1 n y j i l o g ( y j i ′ ) loss=−\frac{1}{m} ∑_{j=1}∑_{i=1}^n y_{ji} log(y_{ji}') loss=m1j=1i=1nyjilog(yji)
m为当前batch的样本数

3 交叉熵在多分类问题中的使用

这里的多类别是指,每一张图像样本可以有多个类别,比如同时包含一只猫和一只狗
和单分类问题的标签不同,多分类的标签是n-hot。
比如下面这张样本图,即有青蛙,又有老鼠,所以是一个多分类问题
对应的标签和预测值
在这里插入图片描述
值得注意的是,这里的Pred不再是通过softmax计算的了,这里采用的是sigmoid。将每一个节点的输出归一化到[0,1]之间。所有Pred值的和也不再为1。换句话说,就是每一个Label都是独立分布的,相互之间没有影响。所以交叉熵在这里是单独对每一个节点进行计算,每一个节点只有两种可能值,所以是一个二项分布。前面说过对于二项分布这种特殊的分布,熵的计算可以进行简化。

同样的,交叉熵的计算也可以简化,即
l o s s = − y l o g ( y ^ ) − ( 1 − y ) l o g ( 1 − y ^ ) loss=−ylog(ŷ )−(1−y)log(1−ŷ ) loss=ylog(y^)(1y)log(1y^)
注意,上式只是针对一个节点的计算公式。这一点一定要和单分类loss区分开来。
例子中可以计算为:
                  在这里插入图片描述
单张样本的loss即为 l o s s = l o s s 猫 + l o s s 蛙 + l o s s 鼠 loss=loss_猫+loss_蛙+loss_鼠 loss=loss+loss+loss
每一个batch的loss就是:
l o s s = ∑ j = 1 m ∑ i = 1 n − y j i l o g ( y j i ′ ) − ( 1 − y j i ) l o g ( 1 − y j i ′ ) loss=∑_{j=1}^m ∑_{i=1}^n−y_{ji}log(y_{ji}')−(1−y_{ji})log(1−y_{ji}') loss=j=1mi=1nyjilog(yji)(1yji)log(1yji)
式中m为当前batch中的样本量,n为类别数。


参考:

https://www.zhihu.com/question/65288314/answer/244557337
https://en.wikipedia.org/wiki/Kullback–Leibler_divergence
https://jamesmccaffrey.wordpress.com/2013/11/05/why-you-should-use-cross-entropy-error-instead-of-classification-error-or-mean-squared-error-for-neural-network-classifier-training/


  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值