Frequency-domain MLPs are More Effective Learners in Time Series Forecasting
时间序列预测在不同的行业,包括金融、交通、能源和医疗保健领域发挥着关键作用。在现有文献设计了许多基于rnn、gnn或transformer的复杂架构的基础上,提出了另一种基于多层感知器(mlp)的方法,该方法结构简单、复杂度低、性能优越。然而,大多数基于mlp的预测方法都存在逐点映射和信息瓶颈问题,这在很大程度上影响了预测效果。为了克服这一问题,我们探索了在频域应用mlp进行时间序列预测的新方向。我们研究了频域mlp的学习模式,并发现它们的两个固有特征有利于预测,(i)全局视图:频谱使mlp拥有信号的完整视图,更容易学习全局依赖关系,以及(ii)能量压缩:频域mlp集中在频率成分的较小关键部分,信号能量紧凑。然后,我们提出了FreTS,这是一种基于频域mlp的简单而有效的结构,用于时间序列预测。FreTS主要包括两个阶段:(i)域转换,将时域信号转换为频域复数信号;(ii)频率学习,执行我们重新设计的mlp来学习频率分量的实部和虚部。上述阶段在系列间和系列内尺度上运行,进一步有助于渠道和时间依赖学习。在13个现实世界基准(包括7个短期预测基准和6个长期预