【阅读整理】An Accurate Skeleton ExtractionApproach From 3D Point Clouds of Maize Plants

本文提出了一种从3D点云中提取玉米植物骨架的准确方法,涉及点云预处理、拉普拉斯收缩、自适应采样、骨架连接和校准。通过对不同品种和生长阶段的玉米进行实验,结果显示提取的骨架与原始点云匹配良好,能有效估计表型参数,如叶长、叶倾角等,适用于玉米研究和表型分析。
摘要由CSDN通过智能技术生成

原文:

Frontiers | An Accurate Skeleton Extraction Approach From 3D Point Clouds of Maize Plants | Plant Science

 

提出方法:

提出了一种准确的骨架提取方法来弥补 3D 点云与玉米植物表型性状估计之间的差距:

该算法首先使用点云聚类和色差去噪来降低输入点云的噪声。

接下来,应用拉普拉斯收缩算法来收缩点。

然后通过自适应采样选取代表植物骨架的关键点,将相邻点连接起来形成由语义器官组成的植物骨架。

最后,通过沿原始点的切线方向建立一个向前的局部坐标,对输入点云的偏差骨架点进行校准。

实现目标:

1、提取玉米叶片的骨架曲线,使茎和叶脉的偏差更小

2、提高玉米植株叶片长度、叶片方位角等需要在基于图像的方法中校准的表型性状的准确性

3、该方法能够求解玉米植株各生育期的点云。

结果:

所提出的方法成功地从 3D 点云中生成准确提取的骨架,并有助于高精度估计玉米植物的表型参数。

骨架提取过程的实验验证,使用三个品种和不同生长阶段的玉米进行测试,表明提取的点云与输入点云很好地匹配。

与 3D 数字化数据衍生的形态参数相比,使用提取的植物骨架估计的叶长、叶倾角、叶顶长、叶方位角、叶生长高度和株高的 NRMSE归一化均方根误差 分别为 5.27、8.37、5.12、分别为4.42、1.53和0.83%,可以满足表型分析的需要。

处理一株玉米所需的时间低于 100 秒。

该方法可能在进一步的玉米研究和应用中发挥重要作用,例如基因型-表型研究、几何重建、功能结构玉米建模和动态生长动画。



理论知识:

由于植物的形态学的复杂性,许多种类的传感器需要涉及获取植物的形态学数据,包括RGB相机,深度照相机,激光雷达,和多光谱相机。

实验环境与方法流程:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值