原文:
提出方法:
提出了一种准确的骨架提取方法来弥补 3D 点云与玉米植物表型性状估计之间的差距:
该算法首先使用点云聚类和色差去噪来降低输入点云的噪声。
接下来,应用拉普拉斯收缩算法来收缩点。
然后通过自适应采样选取代表植物骨架的关键点,将相邻点连接起来形成由语义器官组成的植物骨架。
最后,通过沿原始点的切线方向建立一个向前的局部坐标,对输入点云的偏差骨架点进行校准。
实现目标:
1、提取玉米叶片的骨架曲线,使茎和叶脉的偏差更小
2、提高玉米植株叶片长度、叶片方位角等需要在基于图像的方法中校准的表型性状的准确性
3、该方法能够求解玉米植株各生育期的点云。
结果:
所提出的方法成功地从 3D 点云中生成准确提取的骨架,并有助于高精度估计玉米植物的表型参数。
骨架提取过程的实验验证,使用三个品种和不同生长阶段的玉米进行测试,表明提取的点云与输入点云很好地匹配。
与 3D 数字化数据衍生的形态参数相比,使用提取的植物骨架估计的叶长、叶倾角、叶顶长、叶方位角、叶生长高度和株高的 NRMSE归一化均方根误差 分别为 5.27、8.37、5.12、分别为4.42、1.53和0.83%,可以满足表型分析的需要。
处理一株玉米所需的时间低于 100 秒。
该方法可能在进一步的玉米研究和应用中发挥重要作用,例如基因型-表型研究、几何重建、功能结构玉米建模和动态生长动画。
理论知识:
由于植物的形态学的复杂性,许多种类的传感器需要涉及获取植物的形态学数据,包括RGB相机,深度照相机,激光雷达,和多光谱相机。