PyTorch提速10-100倍,全球首个AI CUDA工程师诞生!

上周国内外AI科技圈又发生了啥新鲜事?

DeepSeek 宣布下周陆续开源 5 个代码库,推翻象牙塔

DeepSeek 宣布将在本周陆续开源 5 个代码库,每日解锁新内容。公司表示,这些代码库已经经过测试和部署,可投入生产环境。DeepSeek 自称为“小小的团队”,强调其车库创业精神和社区共筑的创新理念,致力于打破行业壁垒,推动技术共享与行业发展

https://www.ithome.com/0/832/584.htm

全球首个AI CUDA工程师诞生,将PyTorch原生实现提速10-100倍

日本AI初创公司Sakana AI开发的「AI CUDA工程师」框架,通过将进化计算与大型语言模型结合,实现了从PyTorch代码到高度优化CUDA内核的自动转换,显著提升AI模型在NVIDIA硬件上的运行效率。该框架生成的CUDA内核比PyTorch原生操作提速10-100倍,甚至超越现有生产环境中的优化内核。尽管其技术报告受到一些质疑,但这一创新展示了AI自我优化的巨大潜力,为未来AI的高效运行提供了新思路

https://www.jiqizhixin.com/articles/2025-02-21-7

Spotify 推出 AI 配音有声书服务,支持 29 种语言

Spotify 与 AI 语音提供商 ElevenLabs 合作,正式推出 AI 配音有声书服务。作者可以使用 29 种语言为有声书配音,并选择多种合成语音选项。免费版软件每月提供 10 分钟文本转语音服务,而 Pro 订阅(99 美元/月)可生成 500 分钟配音,相当于一本普通有声书的长度。Spotify 表示,AI 配音将帮助小型作者以更低的成本制作有声书,并推动旧书有声书的制作。所有 AI 配音的有声书将在描述中标注,明确告知听众

https://www.ithome.com/0/832/529.htm

何恺明新作:扩散模型无需噪声条件,实验结果颠覆传统认知

何恺明团队的最新研究发现,去噪扩散模型在无噪声条件的情况下依然可以良好运行,甚至在某些情况下表现更优。研究通过理论分析和实验验证,提出了一个无需训练的误差边界,并设计了无噪声条件的模型变体uEDM,在CIFAR10数据集上实现2.23的FID得分,接近噪声条件模型的最佳表现(FID为1.97)。这一成果有望为去噪生成模型的发展开辟新方向

https://mp.weixin.qq.com/s/zLqWlKVpK8tM_x9uuPx4wg

xAI宣布Grok 3免费开放,直至服务器不堪重负

xAI宣布其“世界最智能AI”系统Grok 3现在免费向公众开放,直至服务器不堪重负。此前,Grok 3仅对X Premium+或SuperGrok订阅用户开放。Grok 3在数学、科学和编码等复杂任务上的表现优于竞争对手,如ChatGPT和DeepSeek。xAI还透露,开发者将很快可以通过API访问Grok 3的标准版和推理版,并使用深度搜索功能

https://x.ai/blog/grok-3

硅基流动完成亿元人民币Pre-A轮融资

北京硅基流动科技有限公司于2024年底完成了亿元人民币的Pre-A轮融资,由华创资本领投,普华资本跟投,老股东耀途资本超额跟投。硅基流动成立于2023年,致力于打造AI基础设施平台,通过算法、系统与硬件的协同创新,降低AI应用的开发和使用门槛。其大模型云服务平台SiliconCloud上线不到一年,用户数超300万,日均调用上千亿Token,支持上百款主流模型,并提供全链路服务。本轮融资后,公司将加速技术创新,助力开发者实现“Token自由”,并推动AGI技术普及

https://mp.weixin.qq.com/s/NyStkbw_JgTulQ-RiA2V4A

Kimi 智能助手推出最新模型 kimi-latest

Kimi 智能助手开放平台近日上线了新模型 kimi-latest,以满足开发者对最新模型能力的需求。该模型将始终对标 Kimi 智能助手当前使用的最新模型,支持上下文长度达 128k,并具备视觉理解能力。开发者可通过 API 调用体验其最新特性,同时保持原有模型的稳定性。kimi-latest 适用于构建聊天应用、智能助手或客服场景,而结构化数据提取等任务仍推荐使用 moonshot-v1 系列模型

https://mp.weixin.qq.com/s/cS0DGGqUP1JOFSnzFWiqJQ

阶跃星辰联合吉利开源多模态大模型

阶跃星辰与吉利汽车集团联合开源了两款多模态大模型——Step-Video-T2V 视频生成模型和 Step-Audio 语音模型。其中,Step-Video-T2V 参数量达 300 亿,可生成高质量视频,性能在全球开源视频生成领域领先;Step-Audio 是业内首款产品级开源语音交互模型,支持多种语言风格和音色克隆。此次开源旨在推动 AGI 发展,为全球开源社区贡献中国力量

https://mp.weixin.qq.com/s/_mmwfiA7L3UQMflPFevVGg

秘塔AI推出“浅度研究”模式,可在 2-3 分钟内完成数百网页分析

秘塔AI搜索上线了“浅度研究”模式,采用“小模型+大模型”协同架构,通过 DeepSeek R1 完成推理任务,结合秘塔自研模型完成快速信息搜索与整合。该模式可在 2-3 分钟内完成数百个网页的搜索与分析,帮助用户快速收集信息并完成初步分析,未来还将加入代码执行和数值分析能力,进一步提升研究效率

https://mp.weixin.qq.com/s/L9lUlYJglyp9iMsr9DcJAw

昆仑万维开源AI短剧创作模型SkyReels-V1

昆仑万维开源了中国首个面向AI短剧创作的视频生成模型 SkyReels-V1 和表情动作可控算法 SkyReels-A1。SkyReels-V1 支持影视级人物微表情表演和电影级光影美学,能够生成高质量的短剧视频;SkyReels-A1 则可实现高保真微表情还原和人物动作驱动。此次开源旨在降低AI短剧创作成本,推动行业生态繁荣发展

https://mp.weixin.qq.com/s/ZIYC_tr7dZ3kmUrrajpXjg

YOLOv12震撼发布,首个以Attention为核心的YOLO框架

YOLOv12正式发布,作为首个以Attention为核心的YOLO框架,它通过创新的区域注意力模块(Area Attention)和残差高效层聚合网络(R-ELAN),解决了传统Attention机制在计算效率和优化稳定性上的难题。实验表明,YOLOv12在多个尺度模型上均展现出显著性能提升,例如N-scale模型的mAP提升3.6%,同时保持了极高的推理速度(1.64ms/图像)。此外,它在参数量和CPU推理速度上也实现了优化,进一步提升了实时目标检测的效率

https://mp.weixin.qq.com/s/Ns6f1TDxoeuveYDqTKrXPg

DeepSeek R1方法成功迁移到视觉领域,多模态AI迎来新突破

DeepSeek 的 R1 方法被成功迁移到视觉语言领域,推出了开源项目 VLM-R1。该项目在 Qwen2.5-VL 基础上验证了 R1 方法的稳定性、泛化能力和易用性,表现出色。VLM-R1 不仅能准确理解视觉内容,还能进行专业推理和清晰的文本表达,为多模态模型训练提供了新思路,有望引领视觉语言模型训练新潮流

https://www.jiqizhixin.com/articles/2025-02-20-10

DeepSeek发布新注意力架构NSA,提升长上下文建模效率

DeepSeek 发布了一种新的注意力机制 NSA(Native Sparse Attention),旨在提升长上下文建模的效率。NSA 通过分层 token 建模和硬件对齐设计,显著降低了计算成本,同时保持了与全注意力机制相当的性能。实验表明,NSA 在长上下文任务中表现出色,推理速度和训练速度均大幅提升,为大语言模型的长序列处理提供了新解决方案

https://www.jiqizhixin.com/articles/2025-02-18-11

月之暗面发布新注意力架构MoBA,与DeepSeek NSA同日亮相

月之暗面发布了一种名为 MoBA(Mixture of Block Attention)的注意力机制,将混合专家(MoE)原理应用于注意力机制,实现对长序列的高效处理。MoBA 通过动态选择关键块进行计算,降低了计算复杂度,同时保持了与全注意力机制相当的性能。实验表明,MoBA 在处理长上下文任务时表现出色,且训练成本更低,代码已公开并经过实际部署验证

https://www.jiqizhixin.com/articles/2025-02-19-11

<think>好的,用户想了解如何在本地部署视频生成AI模型。首先,我需要根据用户提供的三个引用内容来整理相关信息。引用1提到了Animate Anyone的本地部署教程,引用2是关于通义万相2.1的部署,引用3则介绍了Pyramid Flow和CogVideo模型。用户的需求可能集中在具体的步骤和注意事项上。 首先,我应该明确本地部署的基本流程,包括环境准备、模型获取、依赖安装、配置调整和运行测试。每个步骤都需要详细说明,同时结合不同模型的特点。例如,Animate Anyone可能需要特定的深度学习框架,通义万相有不同参数规格,而Pyramid Flow可能依赖Stable Diffusion。 接下来,要确保涵盖不同模型的部署要点。例如,通义万相需要安装CUDAPyTorch,而Animate Anyone可能需要Docker环境。此外,硬件要求是关键,尤其是GPU显存,这会影响用户能否顺利运行模型。用户可能不清楚自己的硬件是否足够,所以需要明确最低配置。 然后,常见问题部分也很重要。比如依赖冲突、显存不足、路径错误等,这些都是部署过程中常见的问题,用户可能会遇到。提供解决方案能帮助他们自行排查问题。 最后,需要生成相关问题,引导用户进一步学习或解决可能遇到的困难。例如,优化生成速度或提升视频质量的方法,这些都是用户后续可能关心的问题。 需要确保回答结构清晰,分步骤说明,引用对应的参考资料,并在末尾添加相关问题。同时,保持语言简洁,避免使用过多技术术语,让不同技术水平的用户都能理解。还要注意检查是否有遗漏的步骤或错误的信息,确保准确性。</think>### 本地部署视频生成AI模型的步骤与方法 #### 一、部署前的准备工作 1. **硬件要求** - 建议使用NVIDIA显卡(至少8GB显存,如RTX 3060及以上)[^1][^2] - 内存推荐16GB以上,存储空间需预留50GB以上(模型文件通常较大)[^3] - 操作系统支持Windows/Linux/macOS(需注意不同模型的兼容性) 2. **软件环境配置** - 安装Python 3.8+和CUDA 11.7+(与显卡驱动匹配) - 配置PyTorch或TensorFlow框架(根据模型要求选择版本) - 使用conda或virtualenv创建独立虚拟环境避免依赖冲突 --- #### 二、主流视频生成模型的部署方法 1. **Animate Anyone部署流程** ```bash # 克隆代码仓库 git clone https://github.com/animate-anyone/official-repo.git cd official-repo # 安装依赖 pip install -r requirements.txt # 下载预训练权重(需官方授权) wget https://example.com/animate_anyone_weights.pth # 运行推理脚本 python inference.py --input_image test.jpg --output_video result.mp4 ``` - **注意事项**:需配置Docker容器支持GPU加速[^1] 2. **通义万相2.1部署** - 支持两种参数规格: ```markdown 1.3B模型:适合消费级显卡(RTX 3060/RTX 4090) 14B模型:需专业级显卡(A100/V100) ``` - 关键配置项: ```yaml # config.yaml model_size: "1.3b" # 或 "14b" resolution: 256x256 frame_length: 24 ``` 3. **Pyramid Flow-SD3部署**[^3] - 基于Stable Diffusion 3的改进架构 - 需额外安装扩散模型支持库: ```bash pip install diffusers transformers accelerate ``` --- #### 三、常见问题与解决方案 | 问题类型 | 表现 | 解决方法 | |---------|------|---------| | 依赖冲突 | `ImportError`报错 | 使用`pip freeze > requirements.txt`对比版本 | | 显存不足 | CUDA out of memory | 降低分辨率或使用`--low-vram`参数 | | 路径错误 | 找不到模型文件 | 检查权重文件路径是否为绝对路径 | --- #### 四、性能优化建议 1. 使用`xFormers`库提升推理速度(可提速30%+)[^3] 2. 启用混合精度训练:`torch.cuda.amp.autocast()` 3. 对长视频采用分段生成策略(如分10秒片段处理)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

啥都生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值