多模态融合的基础问题及算法研究

🌞欢迎来到深度学习的世界 
🌈博客主页:卿云阁

💌欢迎关注🎉点赞👍收藏⭐️留言📝

🌟本文由卿云阁原创!

🙏作者水平很有限,如果发现错误,请留言轰炸哦!万分感谢!


     Illuminating the dark spaces of healthcare with ambient intelligence (nature.com)

上面的论文是李飞飞,发表的nature上的一篇文章。

        数据维度越来越高,数据种类越来越多 ,上图一共展示了5种传感器,如果只根据一个图像,比如第一个图像,很难分析出其中又多少个人,如果我们用第三幅的话,第三幅是热感图像,就可比较容易的看出有哪些人,还有一些其它的传感器,比如深度传感器,声音传感器,运用多元传感器就可以更好的感知。

     下图是其设想的一个图,我们有了多维的数据之后就可以多模态融合,就可以进行一些下游的任务,最简单的比如分类任务,可以分析当前病房是在护理还是在进行其它活动。

     多视图机器学习是多源信息融合的关键技术基础,其研究水平直接关系到人工智能在众多重要领域的应用效果。常见的多模态数据集

多模态医学图像数据集_跨模态医学图像数据集-CSDN博客

     多模态融合的主要目标:利用多源信息有效发现潜在模式,多视图往往可以为数据分析任务提供更为充分的信息进行模式识别,分类,聚类本质上,得到真正的数据,我们得到的数据分布方法是不同视图的。

多模态数据融合策略,首先就是一致性,互补性,兼容性。

互补性 

主动增强 

兼容性

每一列代表一个样本,每一行代表一个模态,黑色代表丢掉一个模态。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卿云阁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值