Subspace
The Definition Of Subspace
- A subspace of a vector space is a set of vectors (including 0) that satisfied two requirments: if w w w and v v v are verctor in the subspace and c c c is any sclar,then
- v + w v+w v+w is in the subspace
- c v cv cv in the subspace
- Every subspace must contain the zero vector. for example:
- The plane in R 3 R^3 R3 has to go through ( 0, 0, 0)
- Lines through the origin are also subspace.
The Column Space of A A A
- The Column space consists of all linear combinations of the columns. The combinations are all possible vectors A x Ax Ax. They fill the column space C ( A ) C(A) C(A)
- The system A x = b Ax=b Ax=b is solvable if and only if b is in the column space of A A A
- Suppose A A A is a m by n matrix , columns belongs to R m R^m Rm (每个column 是m个元素), the column space of A A A is a subspace of R m R^m Rm
The Row Space of A A A
- Like column space , row space is a linear conbinations of rows,rows belongs to R n R^n Rn(每一行有n个元素),所以row space 是 R n R^n Rn的subspace
The Null Space of A A A
- There are nonzero solutions to
A
x
=
0
Ax=0
Ax=0 , each solution x belongs to the nullspace of A, which is denoted by N(
A
A
A) .
- The solution vector x have n components. they are vectors in R n R^n Rn , so nullspace is a subspace of R n R^n Rn
- Solving A x = 0 Ax=0 Ax=0 by elimination
A
x
=
0
−
>
[
1
1
2
3
2
2
8
10
3
3
10
13
]
[
x
1
x
2
x
3
x
4
]
=
[
0
0
0
0
]
Ax=0 \space\space\space\space\space\space\space\space->\space\space\space\space\space\left[ \begin{matrix} 1 & 1&2 & 3 \\ 2 & 2 & 8 &10\\ 3 & 3 & 10& 13 \end{matrix} \right] \left[ \begin{matrix} x1 \\ x2 \\ x3 \\ x4 \end{matrix} \right]= \left[ \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right]
Ax=0 −> ⎣⎡123123281031013⎦⎤⎣⎢⎢⎡x1x2x3x4⎦⎥⎥⎤=⎣⎢⎢⎡0000⎦⎥⎥⎤
Get Triangular U by eliminating A:
U
=
[
1
1
2
3
0
0
4
4
0
0
0
0
]
U= \left[ \begin{matrix} 1 & 1&2 & 3 \\ 0 & 0 & 4 &4\\ 0 & 0 & 0& 0 \end{matrix} \right]
U=⎣⎡100100240340⎦⎤
The pivot variables are
x
1
x1
x1 and
x
3
x3
x3 : column1 and 3 contains pivots
The free variables are
x
2
x2
x2 and
x
4
x4
x4: column2 and 4 have no pivots
Special solutions:
- set x 2 = 1 , x 4 = 0 x2=1 ,x4=0 x2=1,x4=0 , by back substitution x 3 = 0 x3=0 x3=0 ,then x 1 = − 1 x1=-1 x1=−1
- set x 2 = 0 , x 4 = 1 x2=0 ,x4=1 x2=0,x4=1 , by back substitution x 3 = − 1 x3=-1 x3=−1 ,then x 1 = − 1 x1=-1 x1=−1
Complete solutions to
A
x
=
0
Ax=0
Ax=0:
x
2
x2
x2 and
x
4
x4
x4 can be any multiplies
x
=
x
2
[
−
1
1
0
0
]
+
x
4
[
−
1
0
−
1
1
]
x=x2\left[ \begin{matrix} -1 \\ 1 \\ 0 \\ 0 \end{matrix} \right]+x4\left[ \begin{matrix} -1 \\ 0 \\ -1 \\ 1 \end{matrix} \right]
x=x2⎣⎢⎢⎡−1100⎦⎥⎥⎤+x4⎣⎢⎢⎡−10−11⎦⎥⎥⎤
- With n>m ,there is at least one free variable . The system A x = 0 Ax=0 Ax=0 has at least one nonzero solution. the nulllspace dimension is the number of free variables(at least n-m).
The Rank And Reduced Echelon Form R
- The rank of A A A is the number of pivots ,this number is r
- The rank r is the “dimension” of the column space. It is also the dimension of the row space . The great thing is that r also reveals the dimetion of nullspace(n-r).
- R:the conponents above the pivots are 0 in the pivot columns (column 1 and column 3 )
A = [ 1 3 0 2 − 1 0 0 1 4 − 3 1 3 1 6 − 4 ] y i e l d s R = [ 1 3 0 2 − 1 0 0 1 4 − 3 0 0 0 0 0 ] A= \left[ \begin{matrix} 1 & 3&0 & 2&-1\\ 0 & 0 & 1 &4&-3\\ 1 & 3 & 1& 6&-4 \end{matrix} \right] yields \space R=\left[ \begin{matrix} 1 & 3&0 & 2&-1\\ 0 & 0 & 1 &4&-3\\ 0 & 0 & 0& 0&0 \end{matrix} \right] A=⎣⎡101303011246−1−3−4⎦⎤yields R=⎣⎡100300010240−1−30⎦⎤
The form of R is like :
[
I
F
0
0
]
\left[ \begin{matrix} I &F \\ 0 & 0\\ \end{matrix} \right]
[I0F0]
Nullspace matrix form is like :
[
−
F
I
]
\left[ \begin{matrix} -F \\ I\\ \end{matrix} \right]
[−FI]
Nullspace for the A(5-2=3) is: [ − 3 − 2 1 1 0 0 0 − 4 3 0 1 0 0 0 1 ] [ x 1 n o t f r e e x 2 f r e e x 3 n o t f r e e x 4 f r e e x 5 f r e e ] \left[ \begin{matrix} -3 & -2&1 \\ 1 & 0 & 0 \\ 0 & -4 & 3\\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right]\left[ \begin{matrix} x1 \space not\space free \\ x2 \space free \\ x3 \space not\space free \\ x4 \space free \\ x5 \space free \\ \end{matrix} \right] ⎣⎢⎢⎢⎢⎡−31000−20−41010301⎦⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎡x1 not freex2 freex3 not freex4 freex5 free⎦⎥⎥⎥⎥⎤
All solutions to A x = b Ax=b Ax=b
Ax=b
[ 1 3 0 2 0 0 1 4 1 3 1 6 ] [ x 1 x 2 x 3 x 4 ] = [ 1 6 7 ] \left[ \begin{matrix} 1 & 3&0&2\\ 0 & 0 & 1 &4\\ 1 & 3 & 1& 6 \end{matrix} \right]\left[ \begin{matrix} x1 \\ x2\\ x3 \\ x4 \end{matrix} \right]=\left[ \begin{matrix} 1 \\ 6\\ 7 \end{matrix} \right] ⎣⎡101303011246⎦⎤⎣⎢⎢⎡x1x2x3x4⎦⎥⎥⎤=⎣⎡167⎦⎤
augmented matrix:
[
A
b
]
=
[
1
3
0
2
1
0
0
1
4
6
1
3
1
6
7
]
[A \space b]=\left[ \begin{matrix} 1 & 3&0&2&1\\ 0 & 0 & 1 &4&6\\ 1 & 3 & 1& 6&7 \end{matrix} \right]
[A b]=⎣⎡101303011246167⎦⎤
after elimination:
[
1
3
0
2
1
0
0
1
4
6
0
0
0
0
0
]
=
[
R
d
]
\left[ \begin{matrix} 1 & 3&0&2&1\\ 0 & 0 & 1 &4&6\\ 0 & 0 &0& 0&0 \end{matrix} \right]=[R\space d]
⎣⎡100300010240160⎦⎤=[R d]
particular solution:set x2=x4=0 then Xp=(1, 0, 6, 0)
the solutions to Ax=0:
X
n
=
[
−
3
−
2
1
0
0
−
4
0
1
]
Xn=\left[ \begin{matrix} -3& -2\\ 1 & 0 \\ 0 & -4 \\ 0&1 \end{matrix} \right]
Xn=⎣⎢⎢⎡−3100−20−41⎦⎥⎥⎤
Complete solutions:X=Xp+Xn
X
=
[
1
0
6
0
]
+
x
2
[
−
3
1
0
0
]
+
x
4
[
−
2
0
−
4
1
]
X=\left[ \begin{matrix} 1\\ 0 \\ 6 \\ 0 \end{matrix} \right]+x2\left[ \begin{matrix} -3\\ 1 \\ 0 \\ 0 \end{matrix} \right]+x4\left[ \begin{matrix} -2\\ 0 \\ -4 \\ 1 \end{matrix} \right]
X=⎣⎢⎢⎡1060⎦⎥⎥⎤+x2⎣⎢⎢⎡−3100⎦⎥⎥⎤+x4⎣⎢⎢⎡−20−41⎦⎥⎥⎤
four possibilities of solutions depend on rank r
r | A | solutions |
---|---|---|
r=m and r=n | square and invertible | Ax=b has 1 solution |
r=m and r<n | short and wide | Ax=b has ∞ \infty ∞ solutions |
r<m and r=n | tall and thin | Ax=b has 0 or 1 solution |
r<m and r<n | not full rank | Ax=b has 0 or ∞ \infty ∞ solutions |