连续傅里叶变换,拉普拉斯变换之间的关系以及理解


连续傅里叶变换,拉普拉斯变换之间的关系以及理解

原文:https://zhuanlan.zhihu.com/p/24269279?refer=qianshan
10 个月前
一.傅里叶的局限性

傅里叶转换公式:X\left( jw \right) =\int_{-\infty }^{+\infty } x(t)e^{jwt} dt

如果要想该公式成立,x\left( t \right) 需符合狄利赫里条件,即\int_{-\infty }^{+\infty } \left| x\left( t \right)  \right| dt<\infty ,所以这给傅里叶变换公式带来一定的局限性,它只适用于在定义域中收敛的函数,即只能分析稳定的系统!

如果我要分析一些不稳定的系统,即分析在定义域中不收敛的函数,该怎么办呢?


二.拉普拉斯变换

下图是一个在定义域内不收敛的右边信号,\int_{-\infty }^{+\infty } \left| x\left( t \right)  \right| dt\rightarrow \infty,很显然现在他不能用傅里叶变换公式去分析。

但是我能不能给他做一些函数变换,让它在定义中变得收敛,从而再用傅里叶变换去分析它呢!

答案是可以的!

因为总会有一个实指数信号e^{-\sigma t} 乘以信号x\left( t \right) 后,使x\left( t \right) e^{-\sigma t} 其变得收敛,如下图,此时,这样我们岂不是就可以把这信号拿去给傅里叶变换公式分析了!



所以,当我们把信号x\left( t \right) e^{-\sigma t} 带进傅里叶变换公式时,得到:

X\left( jw \right)= \int_{-\infty }^{+\infty } x\left( t \right) e^{-\sigma t} e^{jwt} dt

此时,使s=\sigma +jw,得到:

X\left( s \right)= \int_{-\infty }^{+\infty } x\left( t \right)  e^{st} dt

上式即为拉普拉斯变换,换种说法,其就是一个信号x\left( t \right) e^{-\sigma t} 相乘后的傅里叶变换,即F\left\{ x\left( t \right)e^{-\sigma t}   \right\}


三.S平面

首先来介绍一下s平面:

(ps:在电子书上截图的,可能不是很清晰!)

我们知道s=\sigma +jw,s平面的横坐标便是复数s的实部\sigma ,纵坐标是虚部jw

注意上图,我们可以把图中的阴影部分理解为由无数条一竖竖直线组成,那其中的一竖直线代表什么意思呢?

我们先在其中取一竖固定的直线,此时\sigma 为一固定值,而jw则从-\infty +\infty 变化。

注意公式:X\left( jw \right)= \int_{-\infty }^{+\infty } x\left( t \right) e^{-\sigma t} e^{jwt} dt

\sigma 为某一实数,信号x\left( t \right) e^{-\sigma t} 为一确定信号,从而也确定了X\left( jw \right) ,此时s平面中jwX\left( jw \right) 中的jw是相对应的,即s平面中的一竖直线对应某一种确定信号的傅里叶变换!

再来总结一下s平面:横坐标\sigma 确定了某一信号,从而确定某一傅里叶变换。而纵坐标jw与傅里叶变换X\left( jw \right) 的定义域jw相对应。


四.收敛域问题

假设有一右边信号x\left( t \right) ,让该信号做拉普拉斯变换,x\left( t \right) 先乘以e^{-\sigma t} 得到信号x\left( t \right) e^{-\sigma t} ,想一下,此时当\sigma <0时,往右看,e^{-\sigma t} 成增长趋势,x\left( t \right) e^{-\sigma t} 并不是收敛函数。


因此,并不是所有的\sigma 都使x\left( t \right) e^{-\sigma t} 收敛。

所以,得出了收敛域的定义:在收敛域中,存在\forall \sigma,使得x\left( t \right) e^{-\sigma t} 为收敛函数。

下图x\left( t \right) 为一右边信号,使\sigma 等于某一实数\sigma_{o} ,使得x\left( t \right) e^{\sigma_{o}  t} 为收敛函数,如图:


此时,当\sigma >\sigma _{o} 时,e^{-\sigma t} 衰减速度更快,从而可知x\left( t \right) e^{-\sigma t} 也一定收敛。

所以可以得到拉普拉斯收敛的一个性质:

按照这个思路,我们也同理推出收敛的另一性质:

但如果x\left( t \right) 是双边信号呢,我们可以把x\left( t \right) 分解成一左边信号x_{1} \left( t \right)  和右边信号x_{2} \left( t \right),即

x\left( t \right)  =  x_{1} \left( t \right)  + x_{2} \left( t \right)。当 x\left( t \right) 收敛时,也一定有 x_{1} \left( t \right)  x_{2} \left( t \right)同时收敛,所以可知 x\left( t \right) 的收敛域为 x_{1} \left( t \right)  x_{2} \left( t \right)两者收敛域的重叠部分,如下图:

所以可得到第三个收敛的性质:


五.总结

整篇文章主要讲了拉普拉斯变换过程,讲述了拉普拉斯与傅里叶变换的关系,讲述了s平面的含义以及叙述了拉普拉斯变换收敛域以及其中的三个主要性质。如果想要更详细了解拉普拉斯变换更多地性质,建议去阅读相关资料,由于时间关系,无法一一详细叙述。如有错误地方,希望可以指出,谢谢!


  • 41
    点赞
  • 127
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值