关闭

阅读小结:A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

arXiv: https://arxiv.org/pdf/1704.03414.pdf What: 1. 目标是去增强  检测器对于遮挡和形变 的泛化能力  2. 但是数据集中一般   遮挡和形变 的图像较少   3. 所以作者提出了 adversary的方法去增加 训练难度 4. 整个网络是 基于 Fast-RCNN 而不是 Faster-RCNN How:...
阅读(266) 评论(0)

阅读小结:Unsupervised Learning of Visual Representations using Videos

paper link: http://www.cv-foundation.org/openaccess/content_iccv_2015/html/Wang_Unsupervised_Learning_of_ICCV_2015_paper.html 发表于2015ICCVWhat: 1. 使用视频中的物体去训练网络。比如:可以作为一个pretrain的结果应用到其他分类任务上。 2. 没有使...
阅读(121) 评论(0)

Word2Vec教程(2)- Negative Sampling

原帖地址:http://mccormickml.com/2017/01/11/word2vec-tutorial-part-2-negative-sampling/在word2vec第二部分教程中(这里是第一部分part1) 我将会讨论一些在原有skip-gram 模型基础上 额外的小trick,使模型训练可行。当你读到skip-gram model 的时候,你可能会觉得它是一个很大的网络。(译者...
阅读(801) 评论(0)

Word2Vec教程 - Skip-Gram模型

翻译原始链接: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/这个教程包含 训练word2vec的 skip-gram 模型。通过这个教程,我希望跳过常规Word2Vec 的介绍和抽象理解, 而是去讨论一些细节。特别是skip gram的网络结构。模型skipgram model 常常让人惊讶于它的简单...
阅读(1142) 评论(0)

行人重识别(行人再识别)数据集 DukeMTMC-reID

DukeMTMC-reID 下载地址:https://github.com/layumi/DukeMTMC-reID_evaluation DukeMTMC-reID 为 DukeMTMC数据集的行人重识别子集。原始数据集地址(http://vision.cs.duke.edu/DukeMTMC/) ,为行人跟踪数据集。 原始数据集包含了85分钟的高分辨率视频,采集自8个不同的摄像头。并且...
阅读(1161) 评论(0)

【开源代码合集】行人重识别

关于行人重识别综述,推荐一下liang zheng 2016年的综述: Past, Present and Future 写了从传统方法到深度学习,从图片到视频的行人重识别的方法。 以下为一些公开的行人重识别代码链接: LOMO: Person Re-identification by Local Maximal Occurrence Representation and Metr...
阅读(1090) 评论(0)

可视化神经网络的一些方法

原文为http://cs231n.github.io/understanding-cnn/    可视化CNN学到的东西 有一些方法可以用来理解和可视化CNN, 作为对深度学习不可解释的论述的反击。 1. 可视化激活值和第一层卷积的权重 最直接的可视化方法就是展示在前向传播(forward pass)网络中的激活值(activation) 对于带relu的网络,激活值的m...
阅读(292) 评论(0)

阅读小结:The Unreasonable Effectiveness of Noisy Data for Fine-Grained Recognition

The Unreasonable Effectiveness of Noisy Data for Fine-Grained Recognition paper link: http://cn.arxiv.org/pdf/1511.06789.pdf What: 同上一篇一样,这也是一篇关于细力度分类的paper。 通过加数据来做fine grain(这是以前大家不太想的。因为f...
阅读(374) 评论(0)

阅读小结:Fine-Grained Recognition with Automatic and Efficient Part Attention

这是一篇baidu research的paper。 主题为细力度分类。这个问题在于找到一些关键的细节。比如在鸟类数据集CUB上,专家往往也是通过鸟的尾巴,或者头部来对鸟类分类的。 What: 预测细力度分类的CNN+MDP的网络。 1. 融合了三个元素: 特征提取,attetion 和细力度分类。(之前paper是把attetion part额外切割出来的。比如鸟的头部专门trai...
阅读(508) 评论(2)

【行人重识别】A Discriminatively Learned CNN Embedding for Person Re-identification

A Discriminatively Learned CNN Embedding for Person Re-identification 这篇paper主要提出的是一种 行人重识别 的方法。 1. verification label 为0,1二值。如果输入的两张图片为同一人,则为1,否则为0。 显然,这个label较弱,由于它没有利用上整的数据集的标注信息(每次只考虑了两个或三个样本之间label的关系,如contrastive loss 和 triplet loss)。...
阅读(1481) 评论(4)

阅读A Discriminative Feature Learning Approach for Deep Face Recognition

What: 对于分类任务来说,最后预测的是一个联合概率。 打个比方:[1,0,0,1],[0,1,1,0]我可以预测为同一类。只要用[1,0,1,0]的filter。卷积和都是1,没毛病。 但是我们发现一个问题。 这两个虽然是同一类,但是特征完全不同。也就是说,如果我们拿CNN中间的特征出来,也可能发现这种乌龙事件。 虽然分类效果很好,但是中间层的特征并不是按我们预想的那样分布的。 为了解决这个问题,常见的方案是 contrastive loss 和 triplet loss。作者则提出了一个center...
阅读(863) 评论(3)

阅读小结:Google's Neural Machine Translation System

自然语言处理中很多思想对cv也有用,所以决定看这篇paper。 然后我会从几篇前置的paper看起。 讲CharCNN的文章: https://zhuanlan.zhihu.com/p/21242454 讲为什么Char好的文章:http://colinmorris.github.io/blog/1b-words-char-embeddings (有一些聚类的例子) 1...
阅读(846) 评论(0)

阅读小结:Large-Margin Softmax Loss for Convolutional Neural Networks

徐博最近一直在看我博客,肯定是想看我什么时候不更新,然后好嘲笑我。当然,不排除徐博已经爱上我的可能。 What: 改进SoftmaxLoss,显式的控制类内的距离,(不让 已经对的样本score太高,影响训练) 可以防止过拟合。 回顾SoftmaxLoss: 1. Softmax 就是一个把一个向量归一的函数,输出也是向量。在matlab里就3行代码: % X...
阅读(732) 评论(2)

周志华《机器学习》 读后感

书还是比较厚的,我会挑感兴趣的章节先更新。 以写小结和感想为主。(我也是机器学习入门,所以小结以感性理解为主。) 第四章 决策树 ☑️ ---------第四章 决策树 ----------- What 决策树 首先是一棵树 利用贪心法 每个中间节点 按照学习到的原则分隔 几波数据,(就是分叉几个子节点)。 所以对于分类问题而言,数据从根节点进入,最后掉到的叶结点是哪个...
阅读(2003) 评论(1)

《造梦者》观后感

最近因为签证的事情待在家里,paper也在准备。 可就是没心思写paper,查related work、introduction讲故事 啥的 真的对一个不说英语的人来说很烦啊。 实验上还没有尽善尽美,所以心里很郁闷。 看了造梦者,然后发现马云爸爸果然是高瞻远瞩。 同时也是吃了好多苦。也许他们的成功很难想象,但失败的景象却很容易想象(公司破产,员工讨债)。 但他们毕竟没有失败,作为...
阅读(2311) 评论(0)

设计心理学1_日常的设计 读后感

书很厚,我会一点点update,以感想和摘录书中。 《设计心理学1_日常的设计》 唐纳德.A.诺曼 著 ----------------第一章 日用品心理学---------------- 一开篇作者就通过玻璃门案例 和壶把/茶嘴同一侧的茶壶设计  指出:好的设计有两个重要特征:可视性(discoverability)及 易通性(understanding) 可视性:所...
阅读(1272) 评论(0)

阅读小结:InfoGAN:Interpretable Representation Learning by Information Maximising Generative Adversarial

之前GAN中都没有加入分类信息,都是耍流氓啊。用原始maxD的时候,G学到的容易收敛到一个固定图像。 而用feature matching的话,相同向量可能每次match的都不同,这怎么regression啊,摔  (也可能我是用姿势不对,但有多类的feature matching不靠谱啊) What: 1.通常GAN把一个随机噪声向量z生成为一张图像。z可能从一个 0到1的随机采样...
阅读(3204) 评论(6)

阅读小结:Stacked Hourglass Networks for Human Pose Estimation

arXiv: https://arxiv.org/pdf/1603.06937v2.pdf github: https://github.com/anewell/pose-hg-train What: 人体关键点预测,输入人体图像输出几个关键点。 使用了反复迭代bottom down/  top down 这个策略在人脸landmark 甚至更早像ASM就有,反复迭代来更精...
阅读(1871) 评论(0)

阅读小结:Improved Techniques for training GANS

github地址:https://github.com/openai/improved-gan/ What: 提出了对于GANs新的结构和训练过程。主要focus在两个应用:半监督学习 和  更好的图像产生。 对于G,不要求一个和test data和像的模型,也不要求不使用label。 实验中,D在半监督分类任务上达到了state-of-art的结果。 G在MNIST样本人已经无...
阅读(2383) 评论(9)

阅读小结:Unsupervised Representation with Deep Convolutional Generative Adversarial Networks

What CNN应用于无监督学习。将这种CNN称为DCGANs 1.提出和评估了DCGANs 有一些结构上的限制,让他可以stable的去训练。 2.利用图像分类任务训练的discriminator,证明了他们有无监督学习的潜力。(这是迁移学习?) 证明了他们的adversarial pair学习到了一个  hierarchy of representations  从物体的部分到整个场景...
阅读(640) 评论(2)
34条 共2页1 2 下一页 尾页
    个人资料
    • 访问:43891次
    • 积分:825
    • 等级:
    • 排名:千里之外
    • 原创:31篇
    • 转载:0篇
    • 译文:3篇
    • 评论:40条
    文章分类
    关于我