【负荷预测】基于神经网络和xgboost的负荷预测研究(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

神经网络在负荷预测中的应用

XGBoost在负荷预测中的应用

总结

1. 数据预处理

2. 特征工程

3. 模型选择

4. 模型训练与评估

5. 模型优化

6. 部署与监控

📚2 运行结果

2.1 神经网络模型的预测结果

2.2 按每小时进行误差统计结果

2.3 按每周进行误差统计结果

2.4 误差分布、MAE分布、MAPE分布图

2.5 Xgboost模型的预测结果

2.6 按每小时进行误差统计结果

2.7 按每周进行误差统计结果

2.8 误差分布、MAE分布、MAPE分布图

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于神经网络和XGBoost的负荷预测研究是近年来电力系统和建筑能耗管理领域的热点之一。这两种方法各有优势,且在负荷预测中表现出色。以下是对这两种方法及其在负荷预测中应用的研究概述:

神经网络在负荷预测中的应用

1. 神经网络的基本原理

神经网络是一种模拟人脑神经元结构和功能的计算模型,通过训练自动提取输入数据的特征并建立数据之间的联系。典型的神经网络由输入层、隐藏层和输出层组成,通过前向传播和反向传播进行学习。在负荷预测中,神经网络能够自动捕捉负荷数据的复杂特性,建立输入与输出之间的非线性关系。

2. 常用的神经网络模型

  • BP神经网络:通过反向传播算法调整权重和偏置,以减小预测值与实际值之间的误差。在负荷预测中,BP神经网络可用于单特征或多特征负荷预测。
  • LSTM(长短期记忆网络):是一种特殊类型的递归神经网络,具有记忆单元,能够捕捉长期依赖关系。在负荷预测中,LSTM能够处理时序数据中的长距离依赖问题,提高预测精度。
  • CNN-LSTM:结合卷积神经网络(CNN)和LSTM的混合模型,能够充分利用CNN对图像和信号处理的优势以及LSTM对时序数据的处理能力,在处理复杂负荷数据时具有较高的实用价值。

3. 神经网络在负荷预测中的优势

  • 能够自动提取特征,无需人工设计复杂的特征工程。
  • 能够处理非线性关系,适用于负荷数据的复杂特性。
  • 具有较高的预测精度和泛化能力。

XGBoost在负荷预测中的应用

1. XGBoost的基本原理

XGBoost(eXtreme Gradient Boosting)是一种高效的梯度提升决策树算法,在原有的GBDT(Gradient Boosting Decision Tree)基础上进行了改进,通过集成多个弱学习器来形成一个强学习器。XGBoost利用了核外计算,能够处理大规模数据集,并且在速度和效率上表现出色。

2. XGBoost在负荷预测中的优势

  • 预测精度高:XGBoost在多个数据挖掘竞赛中表现出色,被广泛应用于各种预测任务。
  • 对硬件设施要求低:相比深度学习模型,XGBoost的运行速率更快,更适合实时预测。
  • 可解释性强:相比黑盒模型,XGBoost的决策树结构使得其预测结果更易于理解。

3. XGBoost在负荷预测中的应用实例

研究表明,XGBoost在电网负荷预测中表现出色。例如,在超短期负荷预测中,XGBoost模型相比传统模型在达标率和准确率上都有显著提升。此外,XGBoost还可以与其他模型结合使用,形成组合预测模型,以进一步提高预测精度。

总结

基于神经网络和XGBoost的负荷预测方法各有优势,神经网络能够自动提取特征并处理非线性关系,而XGBoost则具有预测精度高、运行速率快和可解释性强的特点。在实际应用中,可以根据具体需求和数据特点选择合适的模型或模型组合进行负荷预测。未来研究方向可包括改进模型结构、研究多源数据融合技术、优化模型训练和推理过程等,以进一步提高负荷预测的精度和效率。

在处理负荷预测问题时,选择相关性较高的特征是一个重要的步骤,因为它能够简化模型、提高预测精度,并减少计算成本。你已经根据相关性选择了几个关键特征,这是一个很好的开始。以下是一些进一步的步骤和建议,用于处理和分析这些数据,以及进行负荷预测:

1. 数据预处理

  • 缺失值处理:检查数据中是否存在缺失值,并决定是填充(如使用均值、中位数、插值等)还是删除这些样本。
  • 异常值处理:识别并处理异常值,这些值可能是由于设备故障、数据记录错误等原因产生的。可以使用统计方法(如IQR、Z-score)或基于业务逻辑的方法来识别异常值。
  • 数据标准化/归一化:为了加快模型训练速度和提高模型性能,通常需要对特征进行标准化或归一化处理。

2. 特征工程

  • 时间特征:虽然你已经包含了小时和周几作为特征,但可以考虑添加更多时间相关的特征,如月份、季度、是否处于夏季或冬季等。
  • 滞后特征:考虑加入更多滞后变量,如前两天的同一时刻负荷值、前几小时的平均负荷值等,这些可以捕捉到负荷变化的趋势。
  • 交互特征:尝试创建一些交互特征,如干球温度和湿球温度的差值或比例,这些可能包含对负荷有影响的隐藏信息。

3. 模型选择

  • 线性模型:如线性回归、岭回归或套索回归,适用于线性关系较强的场景。
  • 树模型:如随机森林、梯度提升树(GBDT)等,能够处理非线性关系和交互作用。
  • 时间序列模型:如ARIMA、SARIMA、LSTM等,特别适用于时间序列数据的预测。
  • 集成方法:如Stacking、Blending等,可以结合多个模型的优点,提高预测精度。

4. 模型训练与评估

  • 划分数据集:将数据划分为训练集、验证集和测试集,确保模型在未见过的数据上也能表现良好。
  • 交叉验证:使用交叉验证来评估模型的稳定性和泛化能力。
  • 性能评估:使用适当的性能指标(如MAE、RMSE、MAPE等)来评估模型的预测性能。

5. 模型优化

  • 超参数调优:使用网格搜索、随机搜索或贝叶斯优化等方法来找到最佳的超参数组合。
  • 特征选择:进一步减少特征数量,只保留对预测结果影响最大的特征。
  • 模型融合:结合多个模型的预测结果,通常可以获得比单个模型更好的预测性能。

6. 部署与监控

  • 模型部署:将训练好的模型部署到生产环境中,以便进行实时预测。
  • 模型监控:定期评估模型的性能,并根据新的数据更新模型,以保持其准确性和有效性。

通过这些步骤,你可以构建一个有效且准确的负荷预测模型,为能源管理和决策提供支持。

📚2 运行结果

特征包括:边际价格、能源分量、干球温度、湿球温度、系统负荷等多个特征,数据来源清楚,见第4部分。

2.1 神经网络模型的预测结果

2.2 按每小时进行误差统计结果

2.3 按每周进行误差统计结果

2.4 误差分布、MAE分布、MAPE分布图

2.5 Xgboost模型的预测结果

2.6 按每小时进行误差统计结果

2.7 按每周进行误差统计结果

2.8 误差分布、MAE分布、MAPE分布图

部分代码:

function Yhat = xgboost_test(p_test, model)

%%  读取模型
h_booster_ptr = model.h_booster_ptr;

%%  得到输入数据相关属性
rows = uint64(size(p_test, 1));
cols = uint64(size(p_test, 2));
p_test = p_test'; 

%%  设置必要的指针
h_test_ptr = libpointer;
h_test_ptr_ptr = libpointer('voidPtrPtr', h_test_ptr);
test_ptr = libpointer('singlePtr', single(p_test));
calllib('xgboost', 'XGDMatrixCreateFromMat', test_ptr, rows, cols, model.missing, h_test_ptr_ptr);

%%  预测
out_len_ptr = libpointer('uint64Ptr', uint64(0));
f = libpointer('singlePtr');
f_ptr = libpointer('singlePtrPtr', f);
calllib('xgboost', 'XGBoosterPredict', h_booster_ptr, h_test_ptr, int32(0), uint32(0), int32(0), out_len_ptr, f_ptr);

%%  提取预测
n_outputs = out_len_ptr.Value;
setdatatype(f, 'singlePtr', n_outputs);

%%  得到最终输出
Yhat = f.Value;


% %%  得到最终输出
% Yhat = round(double(f.Value));

% %%  不允许超限
% Yhat(Yhat < 1) = 1;
% Yhat(Yhat > max_sort) = max_sort;

end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]孙超,吕奇,朱思曈,等.基于双层XGBoost算法考虑多特征影响的超短期电力负荷预测[J].高电压技术, 2021, 47(8):2885-2895.

[2]陈明华,刘群英,张家枢,等.基于XGBoost的电力系统暂态稳定预测方法[J].电网技术, 2020(3):9.DOI:10.13335/j.1000-3673.pst.2018.1649.

[3]常家康,吕宁,詹跃东.基于XGBoost-RFECV算法和LSTM神经网络的PEMFC剩余寿命预测[J].电子测量与仪器学报, 2022(1):126-133.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

  • 8
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值