大语言模型应用指南:数据投毒
关键词:大语言模型,数据投毒,对抗样本,自然语言处理,安全,可靠
1. 背景介绍
1.1 问题的由来
随着大语言模型的迅速发展,其在自然语言处理、智能客服、问答系统等领域的应用越来越广泛。然而,大语言模型的安全性和可靠性问题也日益凸显。其中,“数据投毒”作为一种针对大语言模型的攻击手段,越来越受到关注。
数据投毒是指攻击者利用特定的技术手段,在训练过程中故意在数据集中引入恶意或有害的样本,从而影响大语言模型的训练结果,使其在下游任务中产生错误或有害的输出。这种攻击手段具有隐蔽性强、隐蔽性高、难以检测等特点,给大语言模型的应用带来了巨大的安全隐患。
1.2 研究现状
近年来,针对数据投毒的研究逐渐兴起,研究者们从理论到实践,对数据投毒的攻击方法、防御策略进行了深入研究。目前,数据投毒的主要研究内容包括:
- 攻击方法研究:研究者们提出了多种攻击方法,如文本替换、字符替换、词汇替换、词性替换、句法结构修改等,通过在数据集中引入恶意样本,实现对大