目录
前言
📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。
🚀对毕设有任何疑问都可以问学长哦!
选题指导:
大家好,这里是海浪学长毕设专题,本次分享的课题是
🎯基于ORB的视频图像拼接系统
课题背景和意义
随着数字图像和视频的普及,图像处理和计算机视觉技术的发展,视频图像拼接成为一个重要的研究领域。视频图像拼接是指将多个视频图像序列无缝地拼接在一起,形成连续、流畅的视频画面。拼接的过程涉及到图像对齐、图像融合、场景转换等关键技术。视频图像拼接可以在电影制作和广告宣传中应用,实现特殊效果和场景的呈现,提高影片或广告的观赏性和吸引力。
实现技术思路
一、 算法理论基础
1.2 加权融合
待拼接图像之间一般存在以下几种位置关系:水平方向平移为主、垂直方向平移为主,以及包括平移、旋转和缩放的透视变换。
对于前两种较简单的位置关系,可以直接利用水平或垂直方向的顶点坐标来确定过渡域的宽度。然而,对于包含更复杂位置关系的情况,可以将图像转换到同一坐标空间后,利用顶点横坐标之差作为过渡宽度,并通过计算重叠区域像素点的横坐标来求取权值,从而在水平方向实现渐入渐出融合。但在垂直方向上可能会出现明显的边缘。如果直接求取不规则的过渡域宽度,则需要计算很多几何量。采用了一种基于重合区域像素点与两幅图像的重合区域侧边缘距离大小来求取融合权值的方法,并结合图像间双边偏移量的权重。我们将其称为含幂系数的双线性加权融合算法。这种方法能够提高融合的准确性和效果,并适用于对拼接速度要求高的视频拼接任务。
在将待拼接图像的整数坐标点变换到拼接后的图像空间时,可能会出现非整数坐标点。为了确定非整数点的像素值,需要使用图像插值技术。常见的图像插值方法有最近邻插值、双线性插值和立方线性插值。然而,立方线性插值过于繁复,一般不适用于图像拼接。采用了双线性插值方法。
对于不规则的过渡域,求解过渡域边缘距离往往转化为一个复杂的几何计算问题,计算复杂度较高。而基于最佳缝合线的泊松融合方法通过寻找最佳拼接缝,并使用权重图来指导融合操作。这种方法在寻找缝合线时需要大量计算,因此融合速度较慢。
1.3 视频拼接算法
算法主要包括四个子算法:ORB特征配准算法、重合域计算与估计、视频帧采样和图像双边线性融合算法。首先,通过视频帧读取解析采集的视频得到帧序列;然后,使用ORB特征配准算法对首帧与后续帧进行全局配准,或在已有限定区域进行特征点检测并与采样帧进行配准;接着,计算当前配准图像的重合区域,并根据重合域的大小调整采样步长,估计下一次配准的重合区域;然后,根据重合域的计算确定关键帧,并调整步长进行下一次采样;最后,使用图像双边线性融合算法对拼接后的图像进行融合,同时将当前帧与下一次输入的关键帧进行配准,并通过透视变换矩阵计算当前帧融合区域在拼接后图像上的范围。当读取到视频末帧时,对末帧和已拼接的图像进行全局配准和融合,并选择生成最终的拼接后的图像输出形式。
ORB是一种用于特征点检测和描述的算法,常用于图像处理和计算机视觉领域。在视频图像拼接技术中,ORB算法可以用于图像配准,即找到不同帧之间的对应关系,从而实现图像的拼接。具有以下特点:
- 旋转不变性:ORB算法可以检测出具有不同旋转角度的特征点,并进行描述。
- 尺度不变性:ORB算法可以检测出具有不同尺度的特征点,并进行描述。
- 鲁棒性:ORB算法对于光照变化和噪声具有一定的鲁棒性,能够在一定程度上处理图像中的干扰。
视频图像拼接中,首先选择一个参考帧作为基准图像,然后使用ORB算法检测出该帧的特征点,并计算出每个特征点的描述子。接下来,对于其他帧,同样使用ORB算法检测出特征点,并计算出描述子。然后,通过比较特征点的描述子,找到不同帧之间的对应关系,即找到在参考帧中与其他帧中的特征点相匹配的点。
相关代码示例:
# 读取视频
cap = cv2.VideoCapture('input_video.mp4')
# 选择参考帧作为基准图像
ret, ref_frame = cap.read()
# 创建ORB对象
orb = cv2.ORB_create()
# 在参考帧中检测特征点并计算描述子
ref_keypoints, ref_descriptors = orb.detectAndCompute(ref_frame, None)
# 创建FLANN匹配器
flann = cv2.FlannBasedMatcher()
while True:
# 读取下一帧
ret, frame = cap.read()
if not ret:
break
# 在当前帧中检测特征点并计算描述子
cur_keypoints, cur_descriptors = orb.detectAndCompute(frame, None)
# 使用FLANN匹配器进行特征点匹配
matches = flann.knnMatch(ref_descriptors, cur_descriptors, k=2)
# 进行比值测试,筛选出最佳匹配
good_matches = []
for m, n in matches:
if m.distance < 0.7 * n.distance:
good_matches.append(m)
# 提取匹配点的坐标
ref_pts = np.float32([ref_keypoints[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)
cur_pts = np.float32([cur_keypoints[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)
二、 数据集
2.1 数据集
由于现有的数据集无法满足需求,我决定亲自进行视频图像拍摄,创建一个全新的数据集。该数据集涵盖了各种场景和环境,包括但不限于自然风景、城市街道、人群活动等。通过现场拍摄,我能够捕捉到真实的场景和多样的视觉特征,为视频图像技术的研究提供更准确、可靠的数据。我相信这个自制的数据集将为视频图像技术的发展和创新提供有力的支持,并为相关领域的研究做出积极贡献。通过这一努力,我希望能够推动视频图像技术的进步,为社会带来更多的应用和益处。
2.2 数据增强
数据增强是一种通过对原始数据进行变换和扩充来增加样本数量和多样性的技术。在视频图像领域,数据增强可以有效地提高模型的鲁棒性和泛化能力。对于图像数据,我将采用常见的数据增强技术,如随机裁剪、旋转、缩放、平移、翻转等操作,以增加图像的多样性。应用一些特定于视频的数据增强方法,如光学流(optical flow)生成、帧插值、帧重排等技术,以模拟不同的运动和动态场景。
相关代码示例:
# 定义数据增强器
augmenter = iaa.Sequential([
iaa.Fliplr(0.5), # 左右翻转50%的概率
iaa.Affine(rotate=(-45, 45)), # 随机旋转-45度到45度之间
iaa.Crop(percent=(0, 0.1)), # 随机裁剪0%到10%的区域
iaa.GaussianBlur(sigma=(0, 3.0)), # 高斯模糊,随机选择模糊程度
iaa.Resize((0.8, 1.2)), # 随机缩放图像大小
])
# 执行数据增强
augmented_image = augmenter.augment_image(image)
三、实验及结果分析
3.1 实验环境搭建
3.2 模型训练
通过对重合区域质心点位置与实际计算出的重合区域位置数据进行对比,我们观察到重合区域的位置变化具有连续性。在视频图像分辨率大小不变的情况下,重叠率基本上与重叠面积成正比。即使存在缩放的情况,帧与帧之间的变化也非常微小,可以利用这些特性来进行视频拼接,并获得较好的拼接结果。
由于最后若干帧画面场景移动缓慢,当出现运动目标时,容易多幅具有运动目标的重叠图像融合出现虚影。而采用我们根据重叠率自适应调整采样步长的关键帧提取算法进行拼接的话可以减少这种情况的出现。重合域计算与预估方法的引入显著提高了图像配准的效率。通过精确计算和预估图像的重叠区域,可以更准确地确定关键帧的选取和拼接位置,从而提高拼接效果。利用该方法提取的关键帧能够基本保留图像的信息,并有效提高了拼接的效率。
具有自适应帧采样的视频拼接系统通过引入重合域计算与预估方法,解决了重叠图像融合虚影的问题。该系统在关键帧提取、图像拼接和运行时效等方面取得了良好的结果,为视频拼接领域的研究和应用提供了有益的探索和实践。
最后
我是海浪学长,创作不易,欢迎点赞、关注、收藏。
毕设帮助,疑难解答,欢迎打扰!