1. 根据3D点拟合平面
2. 能量法搜索最佳拼接缝 seam stitching (searching in github)
–试图用它简单拼接两张图像但失败了,暂时不太明白它的应用场景,这应该是个系统拼接代码,没有细看代码实现,但感觉改改应该可用。
– ☆有详细的图像拼接和融合的过程,也有实现最佳缝合线算法,但是好像没有用最大流最小割啥的…用的好像是逐点遍历,回头可以捋一捋。
– 这里提供了一些可能更优的拼接算法,但是代码太乱了… 很难看下去… 但是有些思路是可以考虑的…
(4) 缝合线搜索分为三种:逐点、动规、图割 & 图像融合的概念
– 逐点法寻找缝合线的方法是基于距离计算的,运算速度自然最快,但是寻找到的缝合线与其他方法对比,缝合线十分粗糙。而动态规划法与最大流检测法相比,虽然速度快了两倍多,但是其精准度显然要次于图割法,质量稍差。因此,在速度相差并不是很大的情况下,选择缝合线质量最好的最大流检测法。
3. NeRF OpenCV OpenGL COLMAP DeepVoxels坐标系朝向
4. Colmap可视化结果的隐含转换
- colmap输出在
images.txt
里图像的tx, ty, tz并不是实际世界坐标系下的T,而是需要转换的,而在colmap的可视化界面中它是进行了转换的。
☆5. 图割法进行最佳拼接缝搜索
理论:
目前在用:maxflow_mincut
6. Block-NeRF
7. Colmap Gui界面的使用
8. Colmap论文解析
9. 相机成像的几何描述
☆10. 图分割
(1)谱聚类
谱聚类(spectral clustering)原理及Python实现 --scikit-learn
谱聚类(spectral clustering)原理及Python实现 – 知乎
(2)KMeans聚类
KMeans对3D点进行聚类并可视化 – 手动实现KMeans类
最优K值的选取:
(3)图割
[论文解读]Graph-Based Parallel Large Scale Structure from Motion
图分割Graph Partitioning技术总结 – 知乎
11. 无参考图像质量评价
图像质量评价(Image Quality Assessment,IQA) – 一个很棒的科研笔记
可用代码实现: 【还是倾向于使用传统方法,Deep方法很大可能对数据集有偏好】
krshrimali / No-Reference-Image-Quality-Assessment-using-BRISQUE-Model
EadCat / NIQA No-Reference Image Quality Assessment Algorithms
–前三种传统方法可正常运行,但后两种Deep方法会报cuda错误,具体原因未知。
12. 2D-3D转换
c++/opencv利用相机位姿估计实现2D图像像素坐标到3D世界坐标的转换
13. 关于焦距Focal Length和视角Angle/Field of View(FoV)
FOV主要由画幅和焦距决定。
光学镜头参数详解(EFL、TTL、BFL、FFL、FBL/FFL、FOV、F/NO、RI、MTF、TV-Line、Flare/Ghost)