11月学习点

1. 根据3D点拟合平面

2. 能量法搜索最佳拼接缝 seam stitching (searching in github)

(1) Image_Stitching_Best_Seam

–试图用它简单拼接两张图像但失败了,暂时不太明白它的应用场景,这应该是个系统拼接代码,没有细看代码实现,但感觉改改应该可用。

(2) 基于sift特征点的图像拼接

– ☆有详细的图像拼接和融合的过程,也有实现最佳缝合线算法,但是好像没有用最大流最小割啥的…用的好像是逐点遍历,回头可以捋一捋。

(3) 多分辨率拼接算法(继最佳缝合线之后)

– 这里提供了一些可能更优的拼接算法,但是代码太乱了… 很难看下去… 但是有些思路是可以考虑的…

(4) 缝合线搜索分为三种:逐点、动规、图割 & 图像融合的概念

– 逐点法寻找缝合线的方法是基于距离计算的,运算速度自然最快,但是寻找到的缝合线与其他方法对比,缝合线十分粗糙。而动态规划法与最大流检测法相比,虽然速度快了两倍多,但是其精准度显然要次于图割法,质量稍差。因此,在速度相差并不是很大的情况下,选择缝合线质量最好的最大流检测法。

3. NeRF OpenCV OpenGL COLMAP DeepVoxels坐标系朝向

4. Colmap可视化结果的隐含转换

  • colmap输出在 images.txt 里图像的tx, ty, tz并不是实际世界坐标系下的T,而是需要转换的,而在colmap的可视化界面中它是进行了转换的。

☆5. 图割法进行最佳拼接缝搜索

理论:

在这里插入图片描述

目前在用:maxflow_mincut

6. Block-NeRF

7. Colmap Gui界面的使用

8. Colmap论文解析

9. 相机成像的几何描述

☆10. 图分割

(1)谱聚类

谱聚类综述 —— 一个浙大的同学&很好的Blog

谱聚类(spectral clustering)原理总结

谱聚类(spectral clustering)原理及Python实现 --scikit-learn

scikit-learn库的谱聚类实现

全面的谱聚类算法原理总结 – 阿里云|天池

谱聚类(spectral clustering)原理及Python实现 – 知乎

(2)KMeans聚类

理论:KMeans聚类分析详解

KMeans对3D点进行聚类并可视化 – 手动实现KMeans类

K-Means图解&算法实现(超详细注释)

sklearn kmeans的实现解析

【点云学习】K-means聚类(Python)

最优K值的选取:

K-means聚类最优k值的选取 – SSE和轮廓系数

(3)图割

[论文解读]Graph-Based Parallel Large Scale Structure from Motion

图分割Graph Partitioning技术总结 – 知乎

图割算法阅读笔记-简书

11. 无参考图像质量评价

图像质量评价(Image Quality Assessment,IQA) – 一个很棒的科研笔记

可用代码实现: 【还是倾向于使用传统方法,Deep方法很大可能对数据集有偏好】

krshrimali / No-Reference-Image-Quality-Assessment-using-BRISQUE-Model

EadCat / NIQA No-Reference Image Quality Assessment Algorithms
–前三种传统方法可正常运行,但后两种Deep方法会报cuda错误,具体原因未知。
在这里插入图片描述

12. 2D-3D转换

c++/opencv利用相机位姿估计实现2D图像像素坐标到3D世界坐标的转换

13. 关于焦距Focal Length和视角Angle/Field of View(FoV)

Pinhole Camera Model – 概念理解

FOV主要由画幅和焦距决定。
在这里插入图片描述
光学镜头参数详解(EFL、TTL、BFL、FFL、FBL/FFL、FOV、F/NO、RI、MTF、TV-Line、Flare/Ghost)

14. 关于Matplotlib绘图

Axes3D 绘制3D图像及子图

莫烦python-Matploylib绘图

Axes3D三维绘制散点图、曲线和曲面

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值