Agent智能体搭建流程|以股票分析AI助手为例详解搭建过程(Dify+DeepSeek)

1. 项目简介

    基于 Dify低代码开发平台 与 DeepSeek-R1大模型,构建一个智能股票分析助手(股票分析Agent)。目标:实现自然语言交互式股票查询、技术指标分析、多维度数据可视化及风险预警,降低普通投资者使用专业金融工具的门槛。

典型场景

  1. 散户投资者:通过对话快速获取个股实时行情、K线形态解读、财务指标对比,形成次日及周度的投资预测报告。

  2. 财经自媒体:一键生成包含技术面/基本面/情绪面分析的内容。

解决痛点

  • 数据分散:整合行情数据、财报数据、舆情数据于单一入口。

  • 分析门槛高:将MACD、RSI等技术指标解读转化为自然语言结论。

  • 响应延迟:通过DeepSeek-R1的高效推理能力实现快速报告生成。

核心功能

  1. 智能问答
    • 支持模糊查询(例:“茅台最近走势如何”“光伏板块龙头股”)

    • 自动关联同行业可比公司数据

  2. 多维度分析报告
    • 技术面:自动识别K线形态(如“头肩顶”“金叉死叉”)

    • 基本面:PE/PB/ROE等指标同业对比

    • 消息面:整合财经新闻情感分析

  3. 风险预警
    • 异动监测(量价突变、大宗交易)

    • 财报暴雷概率预测

2. 股票分析AI助手的原理介绍

    规划-记忆-工具-行动闭环

图片

    规划,负责完成任务拆解、推理逻辑设计及执行路径规划。基于用户输入(如“分析特斯拉未来3个月股价趋势”),Dify的大语言模型(如GPT-4)通过预定义的提示词(Prompt)识别意图,拆解为“获取实时股价数据”“分析财报信息”“整合行业新闻”等子任务。动态调整执行计划:根据中间结果(如财报数据异常)自动调整后续步骤,例如优先调用新闻分析工具而非技术指标工具。

    记忆,存储短期交互记录与长期知识,支持上下文关联与个性化服务。短期记忆:通过Dify的会话管理功能记录当前对话上下文(如用户偏好“只关注技术面分析”),确保多轮交互连贯性。长期记忆:知识库集成:上传行业研报、历史股价数据等结构化文档,构建RAG(检索增强生成)管道,供模型实时检索引用。

    工具使用,集成外部API与数据处理模块,扩展Agent能力边界。数据获取类:获取技术指标(如MACD、KDJ)、成交量及股价等API,使用用户定义(指定使用缠论)或自有的分析逻辑进行分析。调用Dify支持的文生图模型生成股价趋势可视化图表。

    工具调度逻辑:Function Calling模式针对支持此功能的模型(如GPT-4),直接映射工具调用指令。ReAct框架:对不支持Function Calling的模型,通过“思考-行动-观察”循环选择工具。

    行动,执行工具调用并生成最终响应,支持多模态输出与自动化操作。通过提示词模板(如Markdown表格)结构化输出股票的分析结果。

3. 前置准备

  • Dify社区版或云服务版。没有本地部署的可以参考教程Dify本地化部署教程:电脑小白也能轻松上手!

  • 申请DeepSeek-R1 API Key :

    https://account.coreshub.cn/signup?invite=SXBtZzZmWHM=

    DeepSeek-R1、V3满血版注册就送5000万token。申请完成后使用OpenAI-API-compatible添加模型。 

    图片

  • biyingapi.com(金融数据接口)

    MENU点击证书购买-找到免费版,点击立即获取,保存好证书。

    图片

4. Dify 平台实践步骤

   - 编排获取股票数据工作流并发布为工具

     创建空白应用-选择工作流-命名为获取近30交易日成交数据。

图片

添加开始节点,并添加两个变量:url、time

图片

添加http请求节点,将url变量添加到url 中。

图片

添加代码执行节点,截取近30交易日的成交数据。(代码我放到DSL文件中了)

图片

添加结束节点,输出代码执行节点的处理结果。

图片

点击发布,发布更新并发布为工具。添加调用名称、描述、工具入参。

其中工具入参分别为:

url:该股票的查询url,例如:https://api.biyingapi.com/hszbl/fsjy/你的证书ID

time:查询时间格式为时间点 %Y-%m-%d

图片

参照上述流程分别创建近30天kdj查询工具、近30天macd查询工具等。

   - 创建股票分析AI分析助手agent

创建空白应用-选择Agent,并输入名称。

图片

配置模型、温度、top-p、最大标记

图片

输入提示词

图片

添加工具

图片

测试一下吧

图片

5. 常见问题及改进余地

股市有风险,投资需谨慎。通过模型获得的投资结果需要不断验证调整。

也可以通过工作流实现上述效果。后面有时间做一版工作流的。

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

 

### DifyDeepSeek 和 Ollama Agent 的集成与应用 #### 1. 技术概述 Dify 是一个低代码 AI 应用开发平台,允许开发者快速创建和部署基于大语言模型的应用程序[^1]。通过简单的配置文件定义业务逻辑和服务接口,极大地降低了开发门槛。 DeepSeek 则是一个支持私有化本地部署的大规模预训练语言模型,能够处理多种自然语言理解和生成任务,在保障数据隐私的同时提供了强大的计算能力[^2]。 Ollama Agent 主要用于简化大型模型的管理和优化工作流,包括但不限于自动调参、性能监控以及资源调度等功能,从而提高整体系统的稳定性和效率。 #### 2. 集成方案详解 为了更好地理解如何利用这三个组件构建高效的私有化AI知识库,下面给出具体的技术实现路径: ##### 2.1 架构设计 整个系统采用微服务架构模式,其中各个模块之间通过RESTful API 或 gRPC 进行通信交互。核心部分由以下几个子系统组成: - **前端界面层**:负责展示给用户的操作面板; - **API网关层**:统一入口接收外部请求并转发至相应后端服务; - **业务逻辑层**:包含了针对特定领域定制化的算法流程; - **存储管理层**:持久保存结构化/非结构化数据; - **推理引擎层**:集成了来自不同供应商的最佳实践成果——即本案中的 DeepSeek 模型实; ##### 2.2 实现细节 对于想要动手尝试的朋友来说,可以从GitHub仓库获取官方提供的开源项目模板,并按照README.md内的指引完成环境准备阶段的工作。之后便可以根据实际需求调整参数设置以适配目标硬件条件下的最佳表现形式。 ```bash git clone https://github.com/example-repo/dify-deepseek-tutorial.git cd dify-deepseek-tutorial pip install -r requirements.txt ``` 接着就是编写必要的Python脚本来初始化数据库连接池、加载预训练权重矩阵等前置动作了。这里推荐使用PyTorch框架配合Transformers库来进行高效的数据预处理及特征提取作业。 ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained('path/to/deepseek') model = AutoModelForSequenceClassification.from_pretrained('path/to/deepseek') def preprocess(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding='max_length', max_length=512) outputs = model(**inputs)[0].detach().numpy() return outputs.tolist()[0] if __name__ == "__main__": sample_input = "这是一个测试样" result = preprocess(sample_input) print(result) ``` 最后一步则是将上述功能封装进Flask/Django这样的Web服务器进程中去监听HTTP POST事件触发预测过程并向客户端返回JSON格式的结果对象。 #### 3. 常见问题解答 当遇到诸如“无法启动容器”、“内存溢出错误”等问题时,建议先查阅官方文档寻找常见故障排除指南。如果仍然得不到有效解决,则可以通过加入社区论坛寻求帮助或是提交Issue报告等待维护团队介入调查原因所在。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值