1. 项目简介
基于 Dify低代码开发平台 与 DeepSeek-R1大模型,构建一个智能股票分析助手(股票分析Agent)。目标:实现自然语言交互式股票查询、技术指标分析、多维度数据可视化及风险预警,降低普通投资者使用专业金融工具的门槛。
典型场景
-
散户投资者:通过对话快速获取个股实时行情、K线形态解读、财务指标对比,形成次日及周度的投资预测报告。
-
财经自媒体:一键生成包含技术面/基本面/情绪面分析的内容。
解决痛点
-
数据分散:整合行情数据、财报数据、舆情数据于单一入口。
-
分析门槛高:将MACD、RSI等技术指标解读转化为自然语言结论。
-
响应延迟:通过DeepSeek-R1的高效推理能力实现快速报告生成。
核心功能
- 智能问答
-
支持模糊查询(例:“茅台最近走势如何”“光伏板块龙头股”)
-
自动关联同行业可比公司数据
-
- 多维度分析报告
-
技术面:自动识别K线形态(如“头肩顶”“金叉死叉”)
-
基本面:PE/PB/ROE等指标同业对比
-
消息面:整合财经新闻情感分析
-
- 风险预警
-
异动监测(量价突变、大宗交易)
-
财报暴雷概率预测
-
2. 股票分析AI助手的原理介绍
规划-记忆-工具-行动闭环
规划,负责完成任务拆解、推理逻辑设计及执行路径规划。基于用户输入(如“分析特斯拉未来3个月股价趋势”),Dify的大语言模型(如GPT-4)通过预定义的提示词(Prompt)识别意图,拆解为“获取实时股价数据”“分析财报信息”“整合行业新闻”等子任务。动态调整执行计划:根据中间结果(如财报数据异常)自动调整后续步骤,例如优先调用新闻分析工具而非技术指标工具。
记忆,存储短期交互记录与长期知识,支持上下文关联与个性化服务。短期记忆:通过Dify的会话管理功能记录当前对话上下文(如用户偏好“只关注技术面分析”),确保多轮交互连贯性。长期记忆:知识库集成:上传行业研报、历史股价数据等结构化文档,构建RAG(检索增强生成)管道,供模型实时检索引用。
工具使用,集成外部API与数据处理模块,扩展Agent能力边界。数据获取类:获取技术指标(如MACD、KDJ)、成交量及股价等API,使用用户定义(指定使用缠论)或自有的分析逻辑进行分析。调用Dify支持的文生图模型生成股价趋势可视化图表。
工具调度逻辑:Function Calling模式针对支持此功能的模型(如GPT-4),直接映射工具调用指令。ReAct框架:对不支持Function Calling的模型,通过“思考-行动-观察”循环选择工具。
行动,执行工具调用并生成最终响应,支持多模态输出与自动化操作。通过提示词模板(如Markdown表格)结构化输出股票的分析结果。
3. 前置准备
-
Dify社区版或云服务版。没有本地部署的可以参考教程Dify本地化部署教程:电脑小白也能轻松上手!
-
申请DeepSeek-R1 API Key :
https://account.coreshub.cn/signup?invite=SXBtZzZmWHM=
DeepSeek-R1、V3满血版注册就送5000万token。申请完成后使用OpenAI-API-compatible添加模型。
-
biyingapi.com(金融数据接口)
MENU点击证书购买-找到免费版,点击立即获取,保存好证书。
4. Dify 平台实践步骤
- 编排获取股票数据工作流并发布为工具
创建空白应用-选择工作流-命名为获取近30交易日成交数据。
添加开始节点,并添加两个变量:url、time
添加http请求节点,将url变量添加到url 中。
添加代码执行节点,截取近30交易日的成交数据。(代码我放到DSL文件中了)
添加结束节点,输出代码执行节点的处理结果。
点击发布,发布更新并发布为工具。添加调用名称、描述、工具入参。
其中工具入参分别为:
url:该股票的查询url,例如:https://api.biyingapi.com/hszbl/fsjy/你的证书ID
time:查询时间格式为时间点 %Y-%m-%d
参照上述流程分别创建近30天kdj查询工具、近30天macd查询工具等。
- 创建股票分析AI分析助手agent
创建空白应用-选择Agent,并输入名称。
配置模型、温度、top-p、最大标记
输入提示词
添加工具
测试一下吧
5. 常见问题及改进余地
股市有风险,投资需谨慎。通过模型获得的投资结果需要不断验证调整。
也可以通过工作流实现上述效果。后面有时间做一版工作流的。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓