AI Agent(智能体)被定义为能够感知环境、做出决策并采取行动的人工智能实体。受美国汽车工程师学会(SAE)提出的自动驾驶六个级别启发,在论文《Levels of AI Agents: from Rules to Large Language Models》中,作者把人工智能智能体也基于效用和强度分为以下级别:
前排提示,文末有大模型AGI-CSDN独家资料包哦!
-
L0—— 无人工智能,只有工具(具备感知能力)加上行动
-
L1—— 使用基于规则的人工智能
-
L2—— 用基于模仿学习(IL)/ 强化学习(RL)的人工智能替代基于规则的人工智能,并增加推理和决策功能
-
L3—— 用基于大型语言模型(LLM)的人工智能替代基于 IL/RL 的人工智能,另外设置记忆和反思模块
-
L4—— 在 L3 的基础上,促进自主学习和泛化
-
L5—— 在 L4 的基础上,添加个性(情感 + 性格)和协作行为(多智能体)
可以把AI Agents的五个能力级别用下图来表示,我们来对这张图做简单理解:
图中展示了AI智能体的五个级别,并从不同的维度对不同级别AI智能体的能力与性能进行了定义与描述。图表从左至右详细说明了每个级别的技术手段、性能、能力、关键特性、使用案例、以及领域的应用情况。
以下是对每个级别的简单分析和理解:
Level 0: No AI (无AI)
-
技术手段:无AI,仅基于简单的规则和操作。
-
性能:无AI,无法执行智能行为。
-
能力:无AI能力,仅执行预定义的规则和操作。
-
关键特性:无智能行为,没有自主决策能力,完全依赖于预定义的规则。
-
用例场景:无。
Level 1: Rule-Based AI + Tools (基于规则的AI + 工具)
-
技术手段:基于规则的AI与工具组合,完成简单的步骤序列。
-
性能:等同于未具备技能的初级人类。
-
能力:仅能执行按照明确步骤设定的任务。
-
关键特性:遵循预定义规则完成任务,缺乏应对变化的能力。
-
用例场景:例如使用语音助手来执行特定指令(如打开应用或读邮件)。
Level 2: IL/RL-Based AI + Tools (基于监督学习/强化学习的AI + 工具)
-
技术手段:通过监督学习和强化学习驱动,带有推理和决策能力。
-
性能:等同于具备50%技能的成年人。
-
能力:能够在用户定义的任务范围内进行推理和执行决策。
-
关键特性:可以在特定的领域中,通过数据反馈进行自动调整和改进,但范围有限。
-
用例场景:例如天气查询、简单的对话式AI,可以根据输入完成预定任务。
Level 3: LLM-Based AI + Tools (基于大型语言模型的AI + 工具)
-
技术手段:基于大型语言模型(LLM),具备意图、行动、推理、决策、记忆与反思的能力。
-
性能:等同于具备90%技能的成年人。
-
能力:具备自动化任务的战略能力,可以通过工具自动规划任务并根据反馈调整执行步骤。
-
关键特性:在用户定义的任务下,能够自主完成复杂任务,具备较强的推理能力和记忆能力。
-
用例场景:AI能够自主规划并执行任务,例如通过多轮对话完成复杂的用户需求。
Level 4: LLM-Based AI + Tools + Autonomous Learning**(基于大型语言模型的AI + 工具,自主学习与泛化)**
-
技术手段:基于LLM和工具,具备自我学习、泛化和推理能力,记忆与反思进一步增强。
-
性能:等同于99%技能的成年人,接近人类顶尖专家的水平。
-
能力:能够通过上下文感知,提供高度个性化的服务,主动满足用户需求。
-
关键特性:具备深度理解和记忆功能,可以在复杂环境中提供最优解决方案或服务。
-
用例场景:个性化虚拟助手能够根据用户需求主动调整和优化行为。
Level 5: Superhuman AI (超人类AI)
-
技术手段:基于LLM与多智能体协作的AI,具备超越人类的推理、记忆、反思、自主学习和决策能力,情感、个性与协作能力也进一步发展。
-
性能:超越100%技能的成年人,展现出超人类智能。
-
能力:具备真正的数字化人格,能够在人类的角色中执行任务,确保安全与可靠性。
-
关键特性:AI能够在复杂的社交环境中代表用户完成任务,并与他人交互。
-
使用案例:能够代替用户进行交互,安全且可靠地完成复杂任务。
这里展示了AI智能体的五个级别,从最基础的规则驱动系统到潜在的超级智能,逐步提升了AI的能力和应用范围。每个级别的性能与功能均依赖于不同的技术手段,展示了AI逐渐从简单的任务自动化向复杂的、自主学习的系统发展。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓