介绍
《自然语言处理:大模型理论实践》(预览版)一书以自然语言处理中语言模型为主线, 涵盖了从基础理论到高级应用的全方位内容,逐步引导读者从基础的自然语言处理技术走向大模型的深度学习与实际应用。
自然语言处理一直是人工智能最热门的应用研究领域,对科学技术、文化教育、经济社会的发展各个方面都具有极其重大的意义。近年以来,以ChatGPT 为代表的生成式预训练对话人工智能技术(即大语言模型,简称大模型)取得了令人瞩目的进展,给基于统计方法的自然语言处理技术带来了前所未有的进步。
作者
01
资源目录
序 言 3
前 言 5
主要符号表 9
绪论 21
第一部分 语言模型基础 65
- 词向量 67
- 统计语言模型 81
- 神经语言模型 91
- 概述 91
- 神经概率语言模型 91
- 预训练语言模型 105
第二部分 大模型理论 137
- 大语言模型架构 139
- 多模态大模型架构 157
- 大模型预训练 177
- 大模型微调 195
- 提示工程 223
- 涌现 249
- 大模型评估 277
- 探讨 303
第三部分 大模型实践 329
- 大模型本地开发 331
- 基于大模型的应用开发 343
- 预备知识 383
- 缩略语表 421
- 翻译对照表 425
- 相关学术会议与学术组织 429
- 索 引 430
- 参考文献 430