5分钟手把手系列(一):使用Mac Book Pro本地部署大模型

背景

随着行业内越来越多的AI产品落地,很多同学都对AI技术产生浓厚的兴趣,但苦于目前动作几十G上百G的大模型,并且手上的消费级电脑也无法满足各种模型部署运行要求,本文就是基于此背景,介绍如何使用Mac Book Pro本地搭建大模型的入门教程,希望能帮助到对AI有兴趣的同学。毕竟不管什么岗位,如果能自己搭个Demo进行AI相关的学习,也不失为一种AI入门方式。 纸上谈兵终觉浅,绝知此事要躬行,正好借着9月OpenAI最新发布的o1大模型,写一个本地模型部署指南,本人电脑是Mac Book Pro M3 18G机器搭建,M1、M2的机器也是可以的。

方案选择

首先解释一下什么是模型量化

  • 模型量化是做什么的: 模型量化是将浮点数值转化为定点数值,同时尽可能减少计算精度损失的方法。
  • 为什么要做模型量化: 模型量化既能减少资源消耗,也能提高运行速度,使大规模推理服务的性能提升。
  • 对哪些数值做量化: 可以对模型参数(weight)、激活值(activation)或者梯度(gradient)做量化。
  • 常见的量化精度有哪些: 通常可以将模型量化为 int4、int8 等整型数据格式。

目前部署大模型的方式,基本分为两种方案:

  1. 下载原始大模型,然后通过相应的模型量化脚本,将量化后的模型进行本地环境部署,此种方式,下载原始模型费时费力,量化后的模型也不见电脑能带的动,需要不断调整量化参数quantization types,对新人不太友好
  2. 通过Ollama大模型管理工具,一键式部署量化后的LLM模型,本文也是主要介绍此种部署方式,直接通过的Ollama拉取的llama3.1模型信息如下,通过Open WebUI部署运行非常轻松,开着IDE+几十个Chrome页面毫无压力

量化后的模型信息 在这里插入图片描述

运行效果

在这里插入图片描述

Llama3.1

Llama3.1是Meta公司在7月最新发布的LLM模型,分为三个版本8B、70B、405B,有兴趣的同学可以直接去官网了解。 llama.meta.com/
github.com/meta-llama/…

在这里插入图片描述

Ollama

Ollama是一个开源的大模型管理工具,它提供了丰富的功能,包括模型的训练、部署、监控等。 通过Ollama,你可以轻松地管理本地的大模型,提高模型的训练速度和部署效率。 此外,Ollama还支持多种机器学习框架,如TensorFlow、PyTorch等,使得你可以根据自己的需求选择合适的框架进行模型的训练 官网:ollama.com/

在这里插入图片描述

下载安装Ollama

下载安装后,在终端运行 ollama -v 能正常显示版本号即为安装成功

下载安装量化后的Llama3.1

确定Ollama已安装成功后,在终端运行如下代码,Ollama首次会将模型远程下载,并在下载完成后启动 ollama run llama3.1

下载过程还比较顺利,下载完成后,终端会启动大模型,可以直接在终端进行对话问答了,是不是很简单? 但在终端里面进行AI问答,看起来没那么方便,所以我们可以通过Docker+Open WebUI的方案来实现本地Web UI管理调试大模型

在这里插入图片描述

Docker

Docker Desktop 是 Docker 提供的一个方便的工具,适用于 Windows 和 macOS 平台。它包含了 Docker Engine、Docker CLI 客户端、Docker Compose、Kubernetes 和其他工具,使开发人员可以在本地计算机上使用 Docker 容器进行开发和测试。 官网:www.docker.com/products/do…

在这里插入图片描述

Open-WebUI

Open WebUI是一个可扩展、功能丰富、用户友好的自托管WebUI,旨在完全离线操作。 它支持各种LLM运行程序,包括Ollama和OpenAI兼容的API。 官网:www.openwebui.com/

在这里插入图片描述

具体特性可以查看 github:github.com/open-webui/…  当Docker安装完成后,可以通过命令在线安装open-webui,但安装之前,需要注意的是,最好在docker设置中配置镜像地址,否则下载速度非常感人,无法预计什么时候能下载成功

配置registry-mirrors

在这里插入图片描述

直接覆盖即可,我也没测试其中的镜像速度,如果自己有稳定的镜像地址,可以自行替换 { "builder": { "gc": { "defaultKeepStorage": "20GB", "enabled": true } }, "experimental": false, "registry-mirrors": [ "https://hub-mirror.c.163.com", "https://docker.m.daocloud.io", "https://ghcr.nju.edu.cn", "https://mirror.baidubce.com", "http://dockerhub.azk8s.cn", "https://mirror.ccs.tencentyun.com", "https://docker.mirrors.ustc.edu.cn", "https://docker.nju.edu.cn", "https://2h3po24q.mirror.aliyuncs.com" ] }

安装命令

docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

在经过了漫长的等待后,是的,你没看错,用了镜像也不怎么快,没用镜像之前基本就是失败。。。

在这里插入图片描述

启动

在这里插入图片描述

  • 安装完成后,即可在Docker中启动WebUI了,等待片刻后,浏览器输入http://localhost:3000/即可进入 ,如果需要提供给其他局域网中的小伙伴访问,可以找到自己的局域网IP地址,如 30.7.229.xx:3000/
  • 首次进入的时候,需要注册账户,因为注册逻辑是在本地,只需要记住自己的账户密码即可,无需要验证码,首次注册的账号是管理员账号
  • 进行后选择之前下载的Llama3.1模型后,即可开始模型的测试了

在这里插入图片描述

最后附几道测试题结果,目前看起来,Llama3.1的中文理解推理能力还是有待提升的

在这里插入图片描述

写在最后

AI作为后续的各行各业基础技术设施,其使用门槛会不断降低,各种配套框架、生态也会越加丰富。 本人作为一名互联网行业的产品经理(当然,之前也有10来年的Android+iOS+Java后端的开发经验),编写AI模型的本地搭建教程,也是希望通过对新手较为友好的方式,帮助更多对AI感兴趣的同学迈出学习AI技术第一步,只有去深入了解AI背后的运作原理与流程,才能发现AIGC过程中的更多机会。

目前业界比较令人振奋的AI落地场景乏善可陈,在部分用户场景中,其实用规则、算法就已经能很好的解决用户需求,反而用上AI后产生各种啼笑皆非的结果。 最后希望各行各业在AI的加持下,能帮助用户得到更好的使用体验,取得更好商业结果, MCGA~!

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值