AnythingLLM:五分钟快速搭建一个本地知识库能力的智能问答系统(附教程)

前天完成了家用电脑本地化部署DeepSeek蒸馏小模型的部署,但部署后只能在命令行使用,相当不方便,另外也不能把自己的一些私有知识挂上去额外扩展大模型能力。本文说明如何快速通过AnythingLLM完成一个具备私有知识库能力的智能问答系统的本地化搭建。

AnythingLLM 是一款开箱即用的一体化 AI 应用,支持 RAG(检索增强生成)、AI 代理等功能。它无需编写代码或处理复杂的基础设施问题,适合快速搭建私有知识库和智能问答系统。

**(1)下载安装AnythingLLM desktop**

网址:https://anythingllm.com/desktop

支持mac、windows、linux三种环境部署。

我是在win10环境部署,所以下载了windiow版本。下载后直接点击安装即可

**(2)配置AnythingLLM使用本地部署的DeepSeek模型(具体如何部署参见[5分钟在家用电脑完成DeepSeek R1 (1.5B和7B模型)本地化部署](https://mp.weixin.qq.com/s?__biz=MzkyNjQ0NTE5Mw==&mid=2247483813&idx=1&sn=f0859f13a9843de8da6b6b8b3fd2f5ce&scene=21#wechat_redirect))**

在 **AnythingLLM** 的设置页面,可以通过 **LLM 首选项** 修改 LLM 提供商。本文使用本地部署的 **Ollama** 和 deepseek-r1:1.5b模型(注意:务必要先启动ollama 和在ollama中运行起来deepseek-r1:1.5b)。配置完成后,务必点击 `Save changes` 按钮保存设置。

**(3)配置好本地部署的DeepSeek模型后,就可以在AnythingLLM进行问答了(性能比起直接在ollama命令行要慢一些,因为AnythingLLM自身也吃资源,另外是通过API访问模型后也要对用户输入以及模型返回结果进行处理)**

**(4)本地知识库构建(自测效果很不好,下面先就是说明下使用方法。尚需继续研究,猜测是向量化时候的嵌入引擎和和文本分割都用了默认的缘故,等待下一篇细致实验一些嵌入引擎的效果)**

点击资料库上传按钮进入工作区知识库构建页面,AnythingLLM 支持以下三种方式上传文档:

  1. 本地文档上传

    :直接上传本地文件。

  2. Web 链接

    :通过 URL 上传网页内容。

  3. 数据链接

    :从 GitHub、GitLab 等平台导入数据。

Documents Tab

Documents Tab,用户可以管理已上传的文档,并通过下方的上传按钮或拖拽方式上传新文档。见上图

Data Connectors
Tab

Data Connectors 功能支持从 GitHub、GitLab 仓库或网站爬取数据。用户只需输入仓库地址和 Token,即可导入指定目录或网页内容。

**(5)上传示例**

**(6)查询知识库**

将文档添加到工作区后,用户可以通过设置聊天模式调整大模型的回复方式:

  • 聊天模式

    :结合 LLM 的通用知识和上传文档的上下文生成答案。

  • 查询模式

    :仅基于上传文档的上下文生成答案。

修改配置后记得拉到最后点击更新按钮

**(7)Agent功能(尚在研究中)**

在设置页面的 代理技能 中,用户可以管理 Agent。默认开启的 Agent 无法关闭,其他 Agent 需要手动启用。

agent功能查询

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

### 如何搭建 AnythingLLM 服务器 #### 准备工作 为了成功部署 AnythingLLM 服务器,需先准备好运行环境。这通常意味着要有一个支持 Docker 的机器,并确保已正确安装 Docker 和 Docker Compose[^1]。 #### 下载并配置 Ollama Ollama 是作为后端服务来支撑 AnythingLLM 运作的关键组件之一。对于不同操作系统的具体下载和安装指南,在官方文档中有详细介绍[^2]。完成安装之后,按照指引将 Ollama 配置成适合生产使用的服务器模式。 #### 获取 AnythingLLM 并进行初步设置 获取最新版本的 AnythingLLM 发布包或是通过 Git 克隆仓库至本地。接着依照项目内的 README 文件指示执行必要的初始化命令,比如创建所需的目录结构、调整权限等。 ```bash git clone https://github.com/your-repo/anythingllm.git cd anythingllm docker-compose pull ``` #### 启动容器化应用 利用 Docker Compose 工具可以轻松启动整个应用程序栈。只需在一个终端窗口中输入简单的指令即可让所有依赖的服务自动拉取镜像并启动起来: ```bash docker-compose up -d ``` 此过程会读取 `docker-compose.yml` 文件定义好的各项参数和服务关系,从而建立起完整的运行时环境。 #### 构建私有知识库并与前端对接 一旦基础架构准备就绪,就可以着手于构建自己的私有知识库了。这部分涉及到了如何高效地管理以及索引内部资料,使得后续能够快速准确地响应查询请求。同时也要考虑好与前端展示层之间的数据交换机制设计。 #### 测试智能对话功能 最后一步是对新建立的知识管理系统进行全面测试,特别是验证其能否提供智能化程度较高的问答交流体验。可以通过预设一系列典型场景下的问题集来进行评估,观察系统给出的答案质量及其反应速度等方面的表现情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值