用Ollama轻松搞定Llama 3.2 Vision模型本地部署

Ollama 是一个开源的大语言模型服务工具,它的核心目的是简化大语言模型(LLMs)的本地部署和运行过程,请参考《Gemma 2+Ollama在算力魔方上帮你在LeetCode解题》,一条命令完成Ollama的安装。

一,Llama3.2 Vision简介

Llama 3.2 Vision是一个多模态大型语言模型(LLMs)的集合,它包括预训练和指令调整的图像推理生成模型,有两种参数规模:11B(110亿参数)和90B(900亿参数)。

Llama 3.2 Vision在视觉识别、图像推理、字幕以及回答有关图像的通用问题方面进行了优化,在常见的行业基准上优于许多可用的开源和封闭多模式模型。

二,在算力魔方4060版上完成部署

算力魔方4060版是一款包含4060 8G显卡的迷你主机,运行:

ollama run llama3.2-vision

 完成Llama 3.2 Vision 11B模型下载和部署。

三,Llama 3.2实现图片识别

将图片输入Llama3.2-Vision,然后直接输入问题,即可获得图片信息,如下面视频所示:

PX22_GPU

四,总结

在算力魔方上4060版上,用Ollama轻松搞定Llama 3.2 Vision模型本地部署。

更多精彩请持续关注!

### 比较 Ollama3Llama3.2 的区别 #### 特征差异 Ollama3 是基于早期架构设计的大规模语言模型,而 Llama3.2 则代表了后续迭代中的显著改进和发展。具体来说: - **参数量与计算资源需求** Llama3.2 显著增加了参数数量至超过 4050 亿个,在处理复杂任务时表现出更强的能力[^1]。相比之下,Ollama3 可能在参数规模上较小,因此对于硬件的要求也相对较低。 - **优化技术应用** Llama3.2 引入了更先进的训练技术和优化方法,如更高效的量化方案和支持更大批量大小的并行化策略。这使得即使是在有限内存环境中也能有效运行高精度推理任务。 #### 性能提升 - **效率增强** 新版本通过引入稀疏激活机制和其他加速手段提高了整体运算速度;同时降低了对显存的需求,允许更多样化的应用场景部署- **上下文理解能力加强** 经过进一步调优后的注意力机制使 Llama3.2 能够更好地捕捉长距离依赖关系,并且在多轮对话理解和文档摘要生成等方面展现出更好的表现。 #### 应用场景扩展 随着功能特性的不断丰富和完善,Llama3.2 不仅限于传统的自然语言处理领域,还能够胜任更为复杂的跨模态学习任务以及特定行业的专业知识问答服务等高级用途。 ```python # 示例代码展示如何加载不同版本的语言模型 from transformers import AutoModelForCausalLM, AutoTokenizer def load_model(model_name): tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) return model, tokenizer ollama3_model, ollama3_tokenizer = load_model('ollama/ollama3') llama3_2_model, llama3_2_tokenizer = load_model('facebook/llama3.2') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值