自适应噪声完整集合经验模态分解CEEMDAN信号分解,频谱分析,样本熵SE,CEEMDAN-SE可自行选择根据样本熵值重

本文介绍了使用自适应噪声完整集合经验模态分解(CEEMDAN)进行信号分解的方法,并结合频谱分析和样本熵(SE)。CEEMDAN-SE允许根据样本熵值进行重分析,适用于Matlab环境,能有效避免传统EMD的缺陷,提供案例数据以供直接运行。
摘要由CSDN通过智能技术生成


效果一览

在这里插入图片描述

文章概述

自适应噪声完整集合经验模态分解CEEMDAN信号分解,频谱分析,样本熵SE,CEEMDAN-SE可自行选择根据样本熵值重。Matlab语言
包括频谱图
避免了传统经验模态分解的一些固有缺陷 效果更佳
附赠案例数据 可直接运行
直接替换excel数据即可使用 适合新手小白

订阅专栏只能获取专栏内一份代码。

部分源码

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前程算法屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值