自适应噪声完整集合经验模态分解CEEMDAN信号分解,频谱分析,样本熵SE,CEEMDAN-SE可自行选择根据样本熵值重
最新推荐文章于 2024-10-12 00:02:58 发布
本文介绍了使用自适应噪声完整集合经验模态分解(CEEMDAN)进行信号分解的方法,并结合频谱分析和样本熵(SE)。CEEMDAN-SE允许根据样本熵值进行重分析,适用于Matlab环境,能有效避免传统EMD的缺陷,提供案例数据以供直接运行。
摘要由CSDN通过智能技术生成