DeepSeek在央国企的部署:一文了解哪些企业已部署!

摘要:在数字化浪潮奔涌的当下,人工智能(AI)无疑是最为闪耀的那颗星,正以破竹之势重塑着各行各业的发展格局。而近来,国资央企 “牵手” DeepSeek,已然成为科技与商业领域的一股新风潮。据不完全统计,目前已有超 20 家央企接入 DeepSeek,其合作范围广泛,深度触及能源、通信、汽车、金融、建筑等多个关乎国计民生的重要领域 。这一系列动作的背后,是国资央企全面开展 “AI + 专项行动”,加速探索人工智能在丰富多样生产场景中深度应用的坚定决心与积极实践。

  • 哪些央企接入了deepseek?

  • 央企接入deepseek的用途

01

哪些央企接入deepseek?

多家央企积极接入 DeepSeek,在算力端和应用端均有布局。算力端的央企通过与 DeepSeek 合作,推动了国产智算硬件生态的发展,实现了从芯片层到模型服务的全国产化链路;应用端的央企则借助 DeepSeek 的强大功能,在多个业务领域开展了创新性应用,加速了 AI 与业务的深度融合。

1、算力端

中国移动:移动云全面上线 DeepSeek,实现全版本覆盖、全尺寸适配、全功能畅用。为 DeepSeek - R1 模型定制算力方案,全链路深度扎根国产昇腾生态,实现超过 13% 的推理成本降低。这一举措不仅提升了自身的算力服务能力,也为 DeepSeek 在移动云平台上的广泛应用提供了有力支持,推动了国产智算硬件生态的发展。

中国联通:基于 “星罗” 平台实现国产及主流算力适配多规格 DeepSeek - R1 模型,兼顾私有化和公有化场景,实现多产品场景调用。“星罗” 平台的适配能力使得 DeepSeek - R1 模型能够在不同的场景下灵活应用,满足了不同用户的多样化需求,为企业数字化转型提供了更丰富的选择。

中国电信:以 “息壤” 为核心的一体化智算服务体系和能力成为国内最早支持 DeepSeek - R1 模型的云服务商之一,也是国内首家实现 DeepSeek 模型全栈国产化推理服务落地的运营商级云平台。目前已助力中国石化成功部署和应用全尺寸 DeepSeek - R1(671B 版)大模型,为其他企业接入和应用 DeepSeek 模型提供了示范和借鉴。

科大讯飞:全面接入 “满血版” DeepSeek - V3、DeepSeek - R1 在内的 DeepSeek 全系大模型,是首家推出 DeepSeek 大模型精调服务的平台。科大讯飞凭借其在语音识别和人工智能领域的技术优势,与 DeepSeek 的深度合作有望为用户带来更加个性化、智能化的服务体验。

烽火通信:旗下长江计算自主研发的 G440K V2 服务器已实现 DeepSeek 系列模型的推理适配和优化。近日联合昇腾、华为云团队,成功助力某国有大行率先完成 DeepSeek - V3 大模型的本地化推理服务部署,为金融行业的智能化升级提供了技术支持。

中国长城:长城擎天 GF7280 V5 AI 训推一体机已全面适配支持 DeepSeek - R1 系列所有模型的私有化部署,为行业用户提供大模型智能应用落地的一体化解决方案。这一举措有助于推动 DeepSeek 模型在行业内的广泛应用,加速企业智能化转型进程。

深桑达 A:旗下中国电子云 CECSTACK 智算云平台上线全量 DeepSeek - R1/V3 模型,以及 DeepSeek - R1 的蒸馏系列 Qwen/Llama 模型,并提供 DeepSeek - R1 私有化部署方案。已与湖北机场集团、北京海新域城市更新集团、石家庄市数据局、银川创投集团等合作,推动了 DeepSeek 模型在不同领域的落地应用。

电科数字:全资子公司华讯网络自研智鹰智算管理平台已接入 DeepSeek V3/R1 大模型,为行业客户提供 “算力服务器 + DeepSeek 本地私有化模型 + 华讯智鹰智算管理平台 + 华讯 AI 全生命周期服务” 一站式解决方案,满足了行业客户对智能化解决方案的需求。

成都华微:积极推进在处理器开发上进行 DeepSeek 推理模型部署,打造智能联合体在智能机器人、机器狗等方向的应用,提供从算法到软件到算力芯片的端到端解决方案,为智能硬件领域的发展注入了新的活力。

2、应用端

太极股份:电科太极慧点科技人工智能应用平台 CUBE 全面接入人工智能大模型 “DeepSeek”,针对企业办公场景,为 AI + 协同、AI + 审计等领域提供更为深入的思考能力,提升了企业办公效率和智能化水平。

国投智能:公司的 Qiko 大模型应用创新平台及星盾产品已接入 DeepSeek 模型,有助于提升平台和产品的智能化水平,为用户提供更优质的服务。

启明星辰:安星人工智能安全运营系统已与 DeepSeek 完成适配并完成了对九天大模型的优化和适配,已成功部署于华为昇腾、中科可控等国产智算硬件平台,并应用到安全运营、威胁检测、威胁情报、数据安全等全业务场景中,实现安全智能化能力的再升级,为企业的网络安全提供了更强大的保障。

国电南自:自主研发的 “华电睿思” 数字底座已接入 DeepSeek,赋能 “华电睿思” 数字底座在智能问答、文档归纳分析上提供更智能、更精准、更专业的服务,支持多种能源类型、多种数字化业务场景的智能化部署,为 AI 技术赋能新型电力系统注入强劲动力。

远光软件:已全面集成 DeepSeek 大模型,依托 DeepSeek “高效推理能力与低延迟响应” 特性,极大地提升了远光 DAP 等产品在私域知识分析、自然语言交互和场景理解等的流畅度和精准度,将在数字企业、智慧能源等领域为广大客户持续提供更加智能的产品和服务。

中国石化:完成 DeepSeek 在国产化算力环境上的部署并在企业内部分批推广使用,将充分利用 DeepSeek 大模型的高质量编程能力,提升地震资料处理、油藏开发优化、化工产品研发、客户服务等专业模型的开发效率,进一步推动石油化工行业向智能化、数字化转型。

国脉文化:依托 DeepSeek - R1 大模型的私有化部署,率先将 AI 技术深度融入短剧生产全流程,为影视创作带来了新的思路和方法,有望推动短剧行业的创新发展。

中远海科:航运大模型 Hi - Dolphin 已接入 DeepSeek R1 接口,后续将持续推进航运大模型优化升级,积极服务行业数智化转型,为航运行业的智能化发展提供了技术支持。

长安汽车:旗下品牌深蓝汽车的车机系统将接入 DeepSeek 模型,预计一季度所有车型推送,这将提升车机系统的智能化水平,为用户带来更好的驾驶体验。

东风集团股份:旗下自主品牌已完成 DeepSeek 全系列大语言模型接入工作,并将于近期陆续搭载应用于东风岚图、东风猛士、东风奕派、东风风神、东风纳米在内的东风自主品牌车型,助力东风汽车在智能化领域的发展,提升产品竞争力。

02

央国企接入deepseek的用途

提升生产效率

在能源行业,电网的高效调度与运维至关重要。国家电网接入 DeepSeek 大模型后,通过其强大的数据分析和预测能力,实现了对电网运行状态的实时监测与精准分析 。在电网故障诊断方面,以往依靠人工经验和简单的监测系统,故障排查时间长,且容易出现疏漏。而现在,DeepSeek 能够对电网设备运行数据进行深度学习,快速准确地判断故障位置和原因,使故障诊断响应速度实现毫秒级突破,大大缩短了停电时间,保障了电力供应的稳定性。南方电网利用 DeepSeek 优化电力调度,根据实时的用电需求、发电情况以及天气等因素,精准地分配电力资源,减少了能源浪费,提升了电网运行效率。在电力设备运维方面,DeepSeek 通过对设备运行数据的分析,提前预测设备故障,实现预防性维护,降低了设备故障率,提高了设备的使用寿命。

优化客户服务

通信领域的中国移动接入 DeepSeek-R1 模型后,对智能客服进行了全面升级。以往,用户拨打客服电话常常面临等待时间长、问题解答不精准等问题 。如今,借助 DeepSeek 强大的自然语言处理能力,智能客服能够快速理解用户的问题,无论是查询套餐信息、办理业务还是咨询故障,都能给出准确、清晰的回答,实现了与用户的自然流畅对话,大大提升了用户体验。在处理复杂问题时,DeepSeek 还能进行多轮对话,深入了解用户需求,提供个性化的解决方案。中铁物资集团在天翼云的帮助下,基于 “中国铁建供应链管理平台”,部署了 DeepSeek 智能助手。该智能助手具备强大的自然语言处理和逻辑推理能力,能够精准理解供应商的需求,通过上下文语境提取关键信息,支持流畅的多轮对话,提供个性化的服务体验。在测试中,DeepSeek 智能助手的问答识别准确率高达 90% 以上,大大减轻了人工客服的压力,提升了客户服务的效率和质量。

助力业务创新

中国石油在业务创新方面积极探索 DeepSeek 的应用,利用其知识推理和场景理解能力,为油藏开发、地震资料处理等复杂业务提供支持 。在油藏开发中,DeepSeek 通过对海量地质数据的分析,挖掘潜在的油藏信息,为开发方案的制定提供科学依据,提高了油藏开发的效率和成功率。中国华能推出的 “睿智小能” AI 助手,集成了 DeepSeek 系列模型,实现了与 “iHN+” 移动门户的集成,为日常办公与管理带来了全新的智能化体验。在电力生产控制中,“睿智小能” 结合历史数据生成控制参数建议,帮助工作人员实现精准控制,提升了电力生产的效率和安全性。在项目决策中,“睿智小能” 通过对各种数据的分析和模拟,为决策者提供多维度的参考信息,辅助制定科学合理的决策方案。

DeepSeek 与央企的合作,为央企的数字化转型带来了显著的积极影响,成为推动产业升级和创新发展的重要力量。从生产效率提升来看,DeepSeek 强大的数据分析和处理能力,能够帮助央企优化业务流程,实现生产环节的智能化控制与管理 。在能源开采领域,通过对地质数据、开采设备运行数据的实时分析,DeepSeek 可以精准预测开采风险,优化开采方案,提高开采效率,降低生产成本。在通信领域,它助力运营商实现网络资源的智能调配,提升网络稳定性和通信质量。

在创新能力激发方面,DeepSeek 为央企提供了全新的技术手段和创新思路,促进了跨领域、跨学科的融合创新。央企可以借助 DeepSeek 的技术优势,开展前瞻性研究,探索新的业务模式和应用场景。在金融领域,通过与 DeepSeek 合作,央企能够利用人工智能技术进行风险评估、投资决策等,开发出更具创新性的金融产品和服务,满足市场多元化需求。

不过,在合作过程中,也面临着一系列挑战。技术适配与集成难度较大,央国企业务场景复杂多样,不同行业、不同企业的业务流程和技术需求存在差异,如何将 DeepSeek 的通用化技术方案与具体业务需求深度结合,实现无缝集成,仍需大量定制化开发和测试 。未来会有更多的适配和集成来适应具体的应用场景。

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### 解决方案 当遇到 `Failed to build tokenizers` 的错误时,通常意味着构建过程中遇到了依赖项或环境配置方面的问题。以下是几种常见的解决方法: #### 方法一:指定特定版本的库 有时默认安装最新版的包可能导致兼容性问题。对于 Python 3.6 版本,建议尝试安装特定版本的 `transformers` 和其依赖项来解决问题。 ```bash pip install transformers==3.4.0 ``` 此命令会强制安装与当前环境更兼容的版本[^3]。 #### 方法二:调整Python版本 如果上述操作仍无法解决问题,则考虑降级至 Python 3.8 或升级到更高版本。某些情况下,较新的 Python 版本能更好地支持最新的软件包及其编译需求[^4]。 #### 方法三:使用 Conda 安装 Hugging Face 库 为了避免破坏现有环境中其他工具链(如 NumPy),推荐通过 Anaconda 来管理虚拟环境并安装来自 Hugging Face 社区维护的稳定版本: ```bash conda create -n hf_env python=3.8 conda activate hf_env conda install -c huggingface transformers ``` 这种方法不仅能够有效隔离不同项目的依赖关系,还能减少因直接修改全局解释器而引发的风险。 #### 方法四:手动下载预编译轮子文件(wheel) 若以上措施均告失败,还可以尝试从 PyPI 上获取预先编译好的 `.whl` 文件,并利用 pip 进行离线安装。具体步骤如下: 1. 访问 [https://pypi.org/project/tokenizers/#files](https://pypi.org/project/tokenizers/#files),找到适用于目标平台架构的 wheel; 2. 下载对应的 .whl 文件; 3. 执行以下指令完成安装过程: ```bash pip install path_to_downloaded_wheel_file.whl ``` 这种方式绕过了源码编译环节,从而规避了潜在的操作系统层面差异所带来的障碍[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值